Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Robert McSorely x
Clear All Modify Search

Poor water- and nutrient-holding capacity of sandy soils, combined with intense leaching rainfall events, may result in excessive N-fertilizers losses from vegetable production systems. Three cover cropping (CC) systems were used to assess supplemental N-fertilizer requirements for optimal yields of selected vegetable crops. Fertilizer N-rates were 0, 67, 133, 200, and 267; 0, 131, and 196; and 0, 84, 126,168, and 210 kg N/h for sweet corn (Zea mays var. rugosa), broccoli (Brassica oleracea), and watermelon (Citrullus lanatus), respectively. Crop rotations consisted of sunn hemp (Crotalaria juncea) in Fall 2003 followed by hairy vetch (Vicia villosa), and rye (Secale cereale) intercrop or a fallow. During Spring 2004, all plots were planted with sweet corn, followed by either cowpea (Vigna unguiculata) or pearl millet (Pennisetum glaucum), which preceded a winter broccoli crop. Hairy vetch and rye mix benefited from residual N from a previous SH crop. This cropping system provided a 5.4 Mg/ha yield increment for sweet corn receiving 67 kg N/ha compared to the conventional system. For the 133 N-rate, CC-based systems produced similar yields compared to conventional systems amended with 200 kg N/ha. Pearl millet accumulated 8.8 Mg/ha—but only 69 kg N/ha—and potential yields with this system were 16% lower compared to cowpea system. For a subsequent watermelon crop, trends were reversed, possibly due to a delay in mineralization for pearl millet. Because of its persistent growth after mowing, hairy vetch hampered initial growth and shading also delayed fruit development. Although CC may accumulate up to 131 kg N/ha actual N benefits, N-fertilizer benefits were only 67 kg N/ha, which may be related to a lack of synchronization between N release and actual crop demand.

Free access