Search Results
Understanding physiological drought resistance mechanisms in ornamentals may help growers and landscapers minimize plant water stress after wholesale production. We characterized the drought resistance of four potted, native, ornamental perennials: purple coneflower [Echinacea purpurea (L.) Moench], orange coneflower [Rudbeckia fulgida var. Sullivantii (Beadle & Boynt.) Cronq.], beebalm (Monarda didyma L.), and swamp sunflower (Helianthus angustifolius L.). We measured a) stomatal conductance of leaves of drying plants, b) lethal water potential and relative water content, and c) leaf osmotic adjustment during the lethal drying period. Maintenance of stomatal opening as leaves dry, low lethal water status values, and ability to osmotically adjust indicate relative drought tolerance, with the reverse indicating drought avoidance. Echinacea purpurea had low leaf water potential (ψL) and relative water content (RWC) at stomatal closure and low lethal ψL and RWC, results indicating high dehydration tolerance, relative to the other three species. Rudbeckia fulgida var. Sullivantii had a similar low ψL at stomatal closure and low lethal ψL and displayed relatively large osmotic adjustment. Monarda didyma had the highest ψL and RWC at stomatal closure and an intermediate lethal ψL, yet displayed a relatively large osmotic adjustment. Helianthus angustifolius became desiccated more rapidly than the other species, despite having a high ψL at stomatal closure; it had a high lethal ψL and displayed very little osmotic adjustment, results indicating relatively low dehydration tolerance. Despite differences in stomatal sensitivity, dehydration tolerance, and osmotic adjustment, all four perennials fall predominantly in the drought-avoidance category, relative to the dehydration tolerance previously reported for a wide range of plant species.
Abstract
Osmotic adjustment in response to onset of winter dormancy was characterized in well-watered, potted sweetgum (Liquidambar styraciflua L.) and southern magnolia (Magnolia grandiflora L.) growing outdoors in Knoxville, Tenn. Analyses of water potential isotherms indicated that adjustment occurred in both species, with osmotic potential (ψπ) at full turgor decreasing 0.8 MPa in sweetgum (by the time of first color, 27 Oct.) and 1.0 MPa in magnolia (by 1 Dec.). Osmotic adjustment occurred despite the fact that plants did not suffer osmotic stress; morning and afternoon leaf relative water content (RWC) and leaf water potential (ψ) remained high throughout the fall. Leaf conductance was halved in sweetgum and doubled in magnolia as the autumn progressed. A correlation was found in magnolia between turgid : dry weight ratio and ψπ at full turgor. Tissue elasticity decreased somewhat, as the elastic modulus increased ≈2 to 3 MPa in each species through the autumn. Water potential isotherms changed most dramatically through the autumn in magnolia. Initially, ψ was −1 MPa at 82% RWC and, by December, leaves were able to withstand ψs of −3 MPa before RWC dropped to 82%. These changes are similar to those commonly reported as responses to drought or salinity.
Mycorrhizal colonization can alter stomatal behavior of host leaves before or during soil drying, but the mechanism of influence is not always clear. We examined the possibility that mycorrhizal symbiosis might result in either altered stomatal sensitivity to abscisic acid (ABA) moving from roots to shoots in xylem sap, or altered movement of ABA in xylem as a function of soil water content (θ). Mycorrhizal colonization of Vigna unguiculata did not change the relationship between stomatal conductance (g s) and xylem [ABA] during drying of whole root systems. Stomatal conductance was higher in mycorrhizal than in similarly sized and similarly nourished nonmycorrhizal plants when soil moisture was relatively high, perhaps related to lower xylem [ABA] in mycorrhizal plants at high soil θ. Neither g s nor xylem [ABA] was affected by mycorrhizae at low soil θ. Higher g s in mycorrhizal plants was evidently not related to a mycorrhizal effect on leaf water status, as neither g s/shoot Ψ nor shoot Ψ/soil θ relationships were altered by the symbiosis. Stomatal conductance was much more closely correlated with xylem [ABA] than with soil θ or shoot Ψ. Decreased xylem [ABA] may explain why mycorrhizal colonization sometimes increases g s of unstressed mycorrhizal plants in the absence of mycorrhizae-induced changes in host nutrition. This work was supported by USDA NRICGP grant 91-37100-6723 (R.M.A).
The influence of irradiance and drought on osmotic and turgor adjustment was examined in leaves of rose (Rosa hybrida L. `Samantha'). Plants cultured under full ambient light in the greenhouse were placed in shade chambers and, after 2 weeks of acclimation, exposed to drought for 21 days. Treatments consisted of a water stress factor (well-watered and drought-stressed) and an irradiance factor (100%, 70%, and 30% of ambient irradiance). Pressure-volume analyses of leaves indicated that osmotic potentials at full turgor were decreased 0.42, 0.36, and 0.23 MPa by drought in the 100%, 70%, and 30% irradiance treatments, respectively. Plants stressed under 100% and 70% irradiance exhibited similar osmotic adjustments. Plants under 30% irradiance had higher osmotic potentials at full turgor under well-watered conditions than plants in the other two irradiance treatments and showed only 55% as much adjustment to drought. In each irradiance treatment, drought induced an increase in elastic modulus and a decrease in relative water content at zero turgor. Turgor pressures were higher across a range of relative water contents in plants in the two higher irradiance treatments under both soil moisture treatments. Turgor also was higher at any particular water potential at 100% and 70% irradiance than 30% irradiance, within each soil moisture treatment. Heavy, but not mild, shading inhibited osmotic and turgor adjustments in leaves during drought.
Mycorrhizal colonization can alter stomatal behavior of host leaves during drought. This may be related to an altered production or reception of a chemical signal of soil drying. We tested whether intact root systems were required to observe a mycorrhizal effect on leaf transpiration (E), or whether some residual mycorrhizal influence on leaves could affect E of foliage detached from root systems. Transpiration assays were performed in the presence of several possible candidates for a chemical signal of soil drying. In detached leaves of Vigna unguiculata (cowpea), colonization interacted significantly with ABA and pH in regulating transpiration. Colonization affected E of detached Rosa hybrida (rose) leaves but had no effect on E of detached leaves of Pelargonium hortorum (geranium). In each species tested, increasing the ABA concentration decreased E. In cowpea, calcium appeared to alter stomatal sensitivity to ABA, as well as regulate stomatal activity directly. The pH of the feeding solution affected E in rose, but did not change E independently in cowpea or geranium. Adding phosphorus to the feeding solution did not alter E or the apparent sensitivity of stomata to ABA in any of the test species. Colonization of roots by mycorrhizal fungi can result in residual effects in detached leaves, that can alter the stomatal reception of chemical signals in both rose and cowpea.
Consumption of fruit and vegetable crops rich in lutein and β-carotene carotenoids is associated with reduced risk of cancers and aging eye diseases. Kale (Brassica oleracea L. var. acephala D.C.) ranks highest for lutein concentrations and is an excellent source of dietary carotenoids. Kale plants were grown under varied photoperiods to determine changes in the accumulation of fresh and dry biomass, chlorophyll a and b, and lutein and β-carotene carotenoids. The plants were cultured in a controlled environment using nutrient solutions under photoperiod treatments of 6, 12, 16, or 24 hours (continuous). Fresh and dry mass production increased linearly as photoperiod increased, reaching a maximum under the 24-hour photoperiod. Maximum accumulation of lutein, β-carotene, and chlorophyll b occurred under the 24-h photoperiod at 13.5, 10.4, and 58.6 mg/100 g fresh mass, respectively. However, maximum chlorophyll a (235.1 mg/100 g fresh mass) occurred under the 12-hour photoperiod. When β-carotene and lutein were measured on a dry mass basis, the maximum accumulation was shifted to the 16-hour photoperiod. An increase in photoperiod resulted in increased pigment accumulation, but maximum concentrations of pigments were not correlated with maximum biomass production.
We compared the potential for foliar dehydration tolerance and maximum capacity for osmotic adjustment in twelve temperate, deciduous tree species, under standardized soil and atmospheric conditions. Dehydration tolerance was operationally defined as lethal leaf water potential (Ψ): the Ψ of the last remaining leaves surviving a continuous, lethal soil drying episode. Nyssa sylvatica and Liriodendron tulipifera were most sensitive to dehydration, having lethal leaf Ψ of –2.04 and –2.38 MPa, respectively. Chionanthus virginiana, Quercus prinus, Acer saccharum, and Quercus acutissima withstood the most dehydration, with leaves not dying until leaf psi dropped to –5.63 MPa or below. Lethal leaf Ψ (in MPa) of other, intermediate species were: Quercus rubra (–3.34), Oxydendrum arboreum (–3.98), Halesia carolina (–4.11), Acer rubrum (–4.43), Quercus alba (–4.60), and Cornus florida (–4.88). Decreasing lethal leaf Ψ was significantly correlated with increasing capacity for osmotic adjustment. Chionanthus virginiana and Q. acutissima showed the most osmotic adjustment during the lethal soil drying episode, with osmotic potential at full turgor declining by 1.73 and 1.44 MPa, respectively. Other species having declines in osmotic potential at full turgor exceeding 0.50 MPa were Q. prinus (0.89), A. saccharum (0.71), Q. alba (0.68), H. carolina (0.67), Q. rubra (0.60), and C. florida (0.52). Lethal leaf Ψ was loosely correlated with lethal soil water contents and not correlated with lethal leaf relative water content.