Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Robert J. Gordon x
  • Refine by Access: All x
Clear All Modify Search
Free access

Gordon J. Lightbourn, Robert J. Griesbach, and John R. Stommel

Color observed in plants is due to several pigments, in particular chlorophylls, carotenoids, flavonoids, and betalains. The many hues can be attributed to a number of biochemical factors, inclusive of pigment concentration, pigment combinations and their ratios, and vacuolar pH. Shades of violet to black pigmentation in pepper (Capsicum annuum L.) are attributed to anthocyanin accumulation. The color of unripe pepper fruit varies from green and yellow to ivory, through varying shades of violet and purple to nearly black. Whereas pepper fruit color is important for culinary product quality, foliar pigmentation is also an important aspect of ornamental variety appeal. Foliage and stem color may vary from green to varying shades of green/purple to nearly black. HPLC analysis of violet and black pepper fruit revealed a single anthocyanidin that was identified as delphinidin. Black fruit contained five-fold higher chlorophyll concentrations in comparison to violet fruit, which contained relatively little chlorophyll. Differences in fruit pH were not statistically significant. Similar to fruit, black pepper leaf tissue contained delphinidin as the predominant anthocyanidin, but in higher concentration relative to that found in fruit. The results demonstrate that high concentrations of delphinidin in combination with chlorophyll account for black pigmentation. Real-time PCR analysis of tissues that varied in pigmentation intensity due to varying anthocyanin concentration revealed functional, but differentially expressed, structural genes in the anthocyanin biosynthetic pathway. Analysis of regulatory gene expression identified a MYB transcription factor that was differentially expressed in response to varying anthocyanin concentration.

Free access

Gordon J. Lightbourn, John R. Stommel, and Robert J. Griesbach

Anthocyanin pigmentation in leaves, flowers, and fruit imparts violet to black color and enhances both ornamental and culinary appeal. Shades of violet to black pigmentation in Capsicum annuum L. are attributed to anthocyanin accumulation. Anthocyanin production is markedly influenced by numerous environmental factors, including temperature and light stress. The objective of this study was to determine the genetic basis for differences in C. annuum anthocyanin content in response to varying environments. Growth experiments conducted under controlled environment conditions demonstrated that anthocyanin concentration was significantly higher in mature leaves in comparison with immature leaves under high light (435 μmol·s−1·m−2) conditions. High (30 °C day/25 °C night) versus low (20 °C day/15 °C night) temperature had no significant effect on anthocyanin concentration regardless of leaf maturity stage. Foliar anthocyanin concentration in plants grown under short days (10 h) with low light intensity (215 μmol·s−1·m−2) was significantly less than under long days (16 h) with low light. Under high light intensity, daylength had no effect on anthocyanin content. Three structural genes [chalcone synthase (Chs), dihydroflavonol reductase (Dfr), anthocyanin synthase (Ans)] and three regulatory genes (Myc, MybA, Wd40) were selected for comparison under inductive and noninductive environmental conditions for anthocyanin accumulation. Expression of Chs, Dfr, and Ans was significantly higher in mature leaves in comparison with younger leaves. Consistent with anthocyanin concentration, temperature had no effect on structural gene expression, whereas light positively influenced expression. Under low light conditions, temperature had no effect on Myc, MybA, and Wd40 expression; whereas under high light conditions, temperature only had an effect on MybA expression. The study of anthocyanin leaf pigmentation in C. annuum under inductive and noninductive environments provides a new approach for elucidating the molecular genetic basis of epistatic gene interactions and the resulting phenotypic plasticity.

Free access

Eric R. Rozema, Robert J. Gordon, and Youbin Zheng

Certain ions such as Na+ and Cl can accumulate in recirculating greenhouse nutrient solutions and can reach levels that are damaging to crops. An option for the treatment of this problem is phytodesalinization with Na+ and Cl hyperaccumulating plants that could be added to existing water treatment technologies such as constructed wetlands (CWs). Two microcosm experiments were conducted to evaluate eight plant species including Atriplex prostrata L. (triangle orache), Distichlis spicata (L.) Greene (salt grass), Juncus torreyi Coville. (Torrey’s rush), Phragmites australis (Cav.) Trin. ex Steud. (common reed), Spartina alterniflora Loisel. (smooth cordgrass), Schoenoplectus tabernaemontani (C.C. Gmel.) Palla (softstem bulrush), Typha angustifolia L. (narrow leaf cattail), and Typha latifolia L. (broad leaf cattail) for their Na+ and Cl accumulation potential. An initial (indoor) experiment determined that J. torreyi, S. tabernaemontani, T. angustifolia, and T. latifolia were the best candidates for phytodesalinization because they had the highest Na+ and Cl tissue contents after exposure to Na+ and Cl-rich nutrient solutions. A second (outdoor) experiment quantified the Na+ and Cl ion uptake (grams of each ion accumulated per m2 of microcosm). J. torreyi, S. tabernaemontani, T. angustifolia, and T. latifolia accumulated 5.8, 3.9, 8.3, and 9.2 g·m−2 of Na+ and 25.7, 18.2, 31.6, and 27.2 g·m−2 of Cl, respectively. Of the eight species, T. latifolia and S. tabernaemontani showed the greatest potential to accumulate Na+ and Cl in a CW environment, whereas S. alterniflora, D. spicata, and P. australis showed the least potential.

Free access

John R. Stommel, Gordon J. Lightbourn, Brenda S. Winkel, and Robert J. Griesbach

Anthocyanin structural gene transcription requires the expression of at least one member of each of three transcription factor families: MYC, MYB, and WD40. These transcription factors form a complex that binds to structural gene promoters, thereby modulating gene expression. Capsicum annuum L. (pepper) displays a wide spectrum of tissue-specific anthocyanin pigmentation, making it a useful model for the study of anthocyanin accumulation. To determine the genetic basis for tissue-specific pigmentation, we used real-time polymerase chain reaction to evaluate the expression of anthocyanin biosynthetic (Chs, Dfr, and Ans) and regulatory (Myc, MybA, and Wd) genes in flower, fruit, and foliar tissue from pigmented and nonpigmented C. annuum genotypes. No differences were observed in expression of the Wd gene among these tissues. However, in all cases, biosynthetic gene transcript levels were significantly higher in anthocyanin-pigmented tissue than in nonpigmented tissues. MybA and Myc transcript levels were also substantially higher in anthocyanin-pigmented floral and fruit tissues. Our results demonstrate that differential expression of C. annuum MybA as well as Myc occurs coincident with anthocyanin accumulation in C. annuum flower and fruit tissues. In contrast to the situation in flowers and fruit, differential expression of MybA and Myc was not observed in foliar tissue, suggesting that different mechanisms contribute to the regulation of anthocyanin biosynthesis in different parts of the C. annuum plant. Cloning and sequencing of MybA genomic and cDNA clones revealed two introns of 249 and 441 bp between the R2R3 domains. Whereas the Myb R2R3 domains were conserved between C. annuum and Petunia ×hybrida Vilm., the sequence of the non-R2R3 domains was not conserved, with very little homology in these related Solanaceous species.

Free access

Robert K. Prange, Ali A. Ramin, Barbara J. Daniels-Lake, John M. DeLong, and P. Gordon Braun

Fewer postharvest technologies are available for use on organic than conventional fruits and vegetables. Even though biopesticides are perceived as likely candidates for postharvest use on organic produce, only some biopesticides will be approved as organic compounds for various reasons. An example is the definition of a biopesticide used by regulatory agencies such as the EPA which includes compounds that will not be considered organically acceptable. Fortunately, there are other existing or new technologies that could be acceptable on organic fruits and vegetables. Some examples are hot water immersion treatment or a hot water rinsing and brushing, new innovative controlled atmosphere techniques, alternative sprout control agents, naturally occurring volatiles and biofumigants. More research is needed on each of these technologies, both singly and in combination with each other.

Free access

Peter R. Hicklenton, Julia Y. Reekie, Robert J. Gordon, and David C. Percival

Seasonal patterns of CO2 assimilation (ACO2), leaf water potential (ψ1) and stomatal conductance (g1) were studied in three clones (`Augusta', `Brunswick', and `Chignecto') of lowbush blueberry (Vaccinium angustifolium Ait.) over two growing seasons. Plants were managed in a 2-year cycle of fruiting (year 1) and burn-prune (year 2). In the fruiting year, ACO2 was lowest in mid-June and early September. Rates peaked between 10 and 31 July and declined after fruit removal in late August. Compared with the fruiting year, ACO2 in the prune year was between 50% and 130% higher in the early season, and between 80% and 300% higher in mid-September. In both years, however, mid-season maximum ACO2 for each clone was between 9 and 10 μmol·m–2·s–1CO2. Assimilation of CO2 increased with increasing photosynthetic photon flux (PPF) to between 500 and 600 μmol·s–1·m–2 in `Augusta' and `Brunswick', and to between 700 and 800 μmol·s–1·m–2 in `Chignecto'. Midday ψ1 was generally lower in the prune year than in the fruiting year, reflecting year-to-year differences in soil water content. Stomatal conductance (g1), however, was generally higher in the prune year than in the fruiting year over similar vapor pressure deficit (VPD) ranges, especially in June and September when prune year g1 was often twice that observed in the fruiting year. In the fruiting year, g1 declined through the day in response to increasing VPD in June, but was quite constant in mid-season. It tended to be higher in `Augusta' than in the other two clones. Stomatal closure imposes limitations on ACO2 in lowbush blueberries, but not all seasonal change in C-assimilative capacity can be explained by changes in g1.

Free access

Robert L. Long, Kerry B. Walsh, David J. Midmore, and Gordon Rogers

A common practice for the irrigation management of muskmelon (Cucumis melo L. reticulatus group) is to restrict water supply to the plants from late fruit development and through the harvest period. However, this late fruit development period is critical for sugar accumulation and water stress at this stage is likely to limit the final fruit soluble solids concentration (SSC). Two field irrigation experiments were conducted to test the idea that maintaining muskmelon plants free of water stress through to the end of harvest will maximise sugar accumulation in the fruit. In both trials, water stress before or during harvest detrimentally affected fruit SSC and fresh weight (e.g., no stress fruit 11.2% SSC, weight 1180 g; stress fruit 8.8% SSC, weight 990 g). Maintaining plants free of water stress from flowering through to the end of harvest is recommended to maximise yield and fruit quality.