Search Results
You are looking at 1 - 10 of 12 items for :
- Author or Editor: Robert J. Dufault x
- Journal of the American Society for Horticultural Science x
The objective of this study was to determine the effect of forcing summer asparagus (May to October) and age at first harvest after transplanting on yield and quality. Ten-week-old `UC 157 F1' asparagus seedlings were field-planted on Sept. 1986 and forced to emerge from 1988 to 1992 by mowing fern in separate replicated plots in May, June, July, August, September, or October. Forcing treatments were not spring-harvested. Forced yields were compared to normal spring harvests (emerging from January to April). Harvesting began for the first time ≈18 or 30 months after transplanting. Spring 1988 yields were greatest of all, but declined yearly for 5 years. Summer forcing in either July or August maintained acceptable yields through 1992. The warmer climate during summer forcing caused most plants to reach the prescribed cutting pressure (eight spears per plant) within a standard 6-week harvest season. Cooler temperatures during spring harvest seasons slowed spear emergence and prevented the plants from reaching prescribed cutting pressure. Forcing in May and June was too stressful to plant recovery after the harvest season by reducing fern regrowth and increasing plant death. Cooler temperatures during October forcing inhibited spear emergence. Forcing in September yielded less than forcing in July and August, but September asparagus would command higher market prices. There was no advantage at any harvest time to delay first harvests from 18 to 30 months after transplanting. Forcing in July through September has potential as an alternative enterprise in coastal South Carolina.
Fifty-six field plantings of `Baccus', `Citation', `Packman', and `Southern Comet' broccoli were made in Charleston, S.C., at 2-week intervals from February to November from 1990 to 1992. The objective was to determine broccoli's response to growing season mean (GSM) temperatures for several important market quality characteristics, such as head shape, color, density, leafiness, and bead size. Regression analysis determined whether quality was more affected by GSM minimum (min) or maximum (max) temperature for each head quality characteristic. Head leafiness and density of `Baccus' were insensitive to GSM min (7.0 to 23.5 °C) and GSM max (17.5 to 32.5 °C) temperatures experienced during these years. `Baccus' head color was unacceptable at <20.3 °C GSM max and head shape was unacceptable at <19.8 and >26.8 °C GSM max. `Citation' head color and leafiness were unacceptable at >20.5 and >20.2 °C GSM max, respectively. Head density of `Citation' was unacceptable at <19.2 and >28.9 °C GSM max and head shape was unacceptable at <18.4 and >25.7 °C GSM max. Quality of `Packman' was unacceptable for head color at <21.0 and >27.3 °C GSM max, head leafiness at >32.0 °C GSM max, head density at <8.4 and >18.0 °C GSM min, and head shape at >22.0 °C GSM max. `Southern Comet' head quality was unacceptable for head color at <9.2 and >16.5 °C GSM min, head leafiness at >32.0 °C GSM max, head density at <8.9 and >16.2 °C GSM min, and head shape at <21.0 and >25.3 °C GSM max. GSM min or max temperatures did not affect bead size of any cultivar during any planting time studied.
The objective of this research was to determine the least variable method to predict the dates of the first and last broccoli (Brassica oleracea L. var Italica) harvests based on heat unit summation using coefficients of variation (cv). The method with the lowest cv for predicting first harvest was to sum, over days from planting to harvest, the difference between the growing season mean (GSM) temperature and a base temperature of 7.2 °C. If the GSM maximum (max) temperature, however, was >26.7 °C, an adjusted max temperature was calculated by first subtracting 26.7 °C from the GSM max temperature and then subtracting the GSM mean temperature. Then the growing degree days (GDDs) were summed by subtracting the base temperature of 7.2 °C from the average of the GSM minimum (min) and adjusted max temperatures. This method produced a cv of 3.96 compared to 4.13 for the standard method of summing over the entire growing season, the mean temperature minus the base temperature of 4.4 °C. The method with the lowest cv for predicting last harvest was to sum, over days from planting to harvest, the difference between the GSM max temperature and a base temperature of 7.2 °C. If the GSM max temperature, however, was >29.4 °C, the base temperature was subtracted from 29.4 °C and not the actual GSM max temperature. This method produced a cv of 3.71 compared to 4.10 for the standard method of summing over the growing season, the mean temperature minus the base of 4.4 °C.
The purpose of this study was to investigate the effect of different cutting pressures (CP) of 3,6,9, or 12 spears per plant on `UC 157 F1' asparagus yield harvested in spring or forced in July or August. Ten-week-old seedlings were field planted in March, 1987 and forced to emerge from 1989 to 1993 by mowing fern in separate replicated plots in July or August. Forcing treatments were not spring-harvested. Harvesting was terminated if 1) 30 harvests had occurred or 2) 80% of all plants reached cutting pressure treatment levels before 30 harvests occurred. Forced yields were compared to normal spring harvests. Normal emergence time is from January to March. CP treatments affected yield more than harvest time (HT) during the first three harvest years, but, thereafter, HT treatments affected yield more than CP. The most productive HT/CP treatment combinations varied by harvest year as follows: 1989—spring at 9 to 12 spears per plant, July at 12 spears per plant, and August at 9 spears per plant; 1990—forcing in July or August at 12 spears per plant; 1991—forcing in July at 9 to 12 spears per plant; 1992—forcing in July or August at 9 to 12 spears; and 1993—forcing in August at 9 to 12 spears per plant. Total cumulative yields over the 5 year period were highest with forcing in July at 12 spears per plant and August at 9 spears per plant. The productive lifespan of spring-harvested `UC 157 F1' was only three years because of greater stand loss compared to summer forcing.
Abstract
Pretransplanting nutritional conditioning (PNC) regimes were evaluated for their effects on improving tolerance to transplant shock and increasing early fruit production. Muskmelon seedlings (Cucumis melo var. reticulatus L. ‘Magnum 45’) were fertilized twice weekly with solutions containing N, P, and K to determine nutrient needs required to produce high-quality transplants. Seedling height, stem diameter, leaf area, shoot and root dry weights, leaf number, and shoot: root ratios of 27-day-old transplants increased as N rates increased from 10 to 250 mg liter−1. These growth variables also increased with P from 5 to 25 mg·liter−1 but decreased as P increased from 25 to 125 mgliter−1. Increasing K rates from 10 to 250 mg·liter−1 increased seedling height, stem diameter, and leaf area. Nine PNC regimes ranging from low to high N-P-K status were tested under field conditions to determine any long-term advantage. Generally, as PNC levels increased, transplant shock (percentage of necrotic leaves) increased as measured 12 days after transplanting. However, vining, female flowering, fruit set, and early yields increased as PNC levels increased. A high level of PNC (250N-125P-250K, mg·liter−1) conditioned transplants to overcome shock and to resume growth sooner and yield earlier than those at lower PNC levels.
Watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) seedlings transplanted before the last frost date may be exposed to temperatures alternating between freezing and optimal until field temperatures finally stabilize. Cold stress may ultimately reduce growth and yield. To simulate such temperature alternations that occur naturally after field transplanting, diploid `Carnival' watermelon seedlings were exposed immediately before field planting to cyclic cold temperature stress at 2 ± 1 °C then transferred to a greenhouse at 29 ± 5 °C. In 1997, transplants were exposed to 2 °C from 3 to 81 hours and in 1998, exposure ranged from 9 to 81 hours. Cold-stressed seedlings were field planted after all potential risk of cold stress in the field had passed. In 1997, cold stress decreased seedling shoot and root fresh and dry weights, leaf area, chlorophyll and carbohydrate contents but not seedling height. In 1998, all seedling growth variables decreased in response to longer durations of cold stress. Plants cold stressed for up to 81 hours transpired more for 1 week after transplanting than those exposed to shorter periods of cold stress. In both years, vining (date first runner touched the ground), flowering, and fruit set were delayed significantly as cold stress hours increased. Although early yields were unaffected, total yields decreased linearly in both years with increasing hours of cold, with 38 to 40 hours of cold stress reducing yield 10% in both years. Data indicate that `Carnival' watermelon transplants exposed to cold stress soon after transplanting may suffer yield reductions.
For the earliest yields of spring melons, muskmelon [Cucumis melo L. (Reticulatus Group)] fields in the southeast United States may be transplanted in late winter before the last frost date. Seedlings may be exposed to cold temperatures cycling between almost freezing and optimal for weeks before warm weather predominates and such exposure may reduce later growth and yields. To test whether cold stress may reduce growth and yield, `Athena' muskmelon seedlings were subjected to cold stress at 2 ± 1 °C then transferred to a greenhouse at 29 ± 5 °C before field transplanting. In 1997, cold exposure durations were 3, 6, or 9 h and were repeated (frequency) for 1, 3, 6, or 9 d before transplanting. In 1998, duration levels were not changed but frequencies were 3, 6, or 9 d. In 1997, as cold stress increased, seedling shoot and root fresh and dry weights, height, leaf area, and leaf chlorophyll content decreased linearly, but shoot carbohydrates decreased curvilinearly and stabilized with ≈54 hours cold stress. In 1998, all seedling growth characteristics except leaf chlorophyll content decreased linearly as cold stress exposure increased. Leaf chlorophyll content decreased curvilinearly as cold stress increased to 36 h, but leveled off with more hours of cold stress. Even 1 week after transplanting, plants exposed to cold stress for up to 81 h continued to transpire more than control plants. In both years, vining (date first runner touched the ground) and male and female flowering were delayed significantly with increasing cold stress, but fruit set was affected only in 1998. Cold stress in 1998 delayed earliness with early fruit weight and number per plot decreasing as cold stress exposure increased. Total yields decreased linearly in both years as cold stress increased with 21 to 32 hours causing 10% yield reduction in 1997 and 1998, respectively. Results indicate a potential risk exists for yield reduction if `Athena' muskmelon is planted weeks before last frost dates.
Tomato seedlings (Lycopersicon esculentum Mill. `Sunny') were exposed to cyclic cold stress at 2 ± 1C, then to 29 ± 6C in a greenhouse before being transplanted to the field. Cold-stressed seedlings were transplanted when the risk of ambient cold stress was negligible. In the first year of a 2-year study, transplants were exposed to 2C for 3, 6, or 12 hours for 1, 3, or 6 days before field planting. In the second year, transplants were exposed to 2C for 6, 12, or 18 hours for 4, 7, or 10 days before field planting. In the first year, cold stress generally stimulated increases in seedling height, leaf area, and shoot and root dry weights but decreased chlorophyll content. In the second year, all seedling growth characteristics except leaf area and plant height were diminished in response to longer cold-stress treatment. In both years, earliness, total productivity, and quality were unaffected by any stress treatment. Therefore, cold stress occurring before transplanting has a negligible effect on earliness, yield, or quality.
`Sunny' tomato (Lycopersicon esculentum Mill.) seedlings were pretransplant nutritionally conditioned (PNC) in 1988 and 1989 with factorial combinations of N from 100 to 300 mg·liter-1 and P from 10 to 70 mg·liter-1. In 1988, all conditioned seedlings were exposed to 12 hours of 2C for eight consecutive nights before transplanting. In 1989, half of the conditioned plants were exposed to a low-temperature treatment of 8 days with 12-hour nights at 2C and 12-hour days in a warm greenhouse (19C/26C, night/day). In both years, as N PNC increased to 200 mg·liter-1, seedling growth increased. Increasing P PNC from 10 to 40 mg·liter-1 increased seedling growth, but only in 1988. In both years, P PNC did not affect yields. Low-temperature exposure in 1989 decreased seedling growth in comparison to those held in a warm greenhouse (19C/26C, day/night). In 1988, first harvest yields were not affected by N PNC; however, in 1989, as N increased to 200 mg·liter-1, early yields increased. In 1988, total yields increased wit h N PNC from 100 to 200 mg·liter-1 and in 1989 with N at 50 to 100 mg·liter-1 with no further increases from 100 to 200 mg·liter-1. Low-temperature exposure had no effect on earliness, yield, or quality. A PNC regime combining at least 200 mg N/liter and up to 10 mg P/liter should be used to nutritionally condition `Sunny' tomato seedlings to enhance yield.
Abstract
Growth studies of field-seeded hybrid and open-pollinated asparagus (Asparagus officinalis L.) were conducted to determine the differences in shoot, bud, and crown growth during the first season after seeding and to determine growth relationships between shoot and crown variables that indicate critical periods of bud and crown production. F1 hybrid (UC 157) and UC800 open-pollinated (OP) asparagus seedlings emerged 4 to 6 weeks after seeding. A lag phase of shoot and root growth lasted 4 to 5 weeks after emergence in both cultivars. UC157 initiated more roots and accumulated more fern and crown fresh weight than UC800 early in the season, but by harvest crowns were not different in root and bud number, fresh weight, or fructose content (crown quality). Root/shoot ratios increased from a 2:1 ratio 6 weeks after emergence to 8:1 (UC157) and 6:1 (UC800) 23 weeks after emergence. Shoot/bud ratios stabilized from an approximate 2:1 ratio initially to an approximate 1:2 ratio 18 weeks after emergence. Bud production in the F1 and OP cultivars increased 6 and 10 weeks after emergence, respectively, and continued unabated up to crown harvest 23 weeks after emergence. Shoot number and fresh weight were not correlated highly with bud number. The number of roots vs. buds and the crown vs. fern fresh weights were correlated highly and were the best indicators of quality crown production. Vigorous fern development throughout the growing season increased the potential to produce higher-quality large crowns.