Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Robert Heyduck x
Clear All Modify Search
Full access

Shengrui Yao and Robert Heyduck

All jujube (Ziziphus jujuba) cultivars can be used as fruit trees and in landscaping, but there are four striking ornamental cultivars in our collection: Dragon, Mushroom, So, and Teapot. These cultivars are decorative and can be used for fruit, tree shape, or both as edible landscape plants. We evaluated these four ornamental jujube cultivars in central and northern New Mexico. All four cultivars grew and produced well but performed differently. ‘So’, imported from China in 1914, was a productive and contoured cultivar with medium-sized, sweet/tart fruit and bushy trees, with a decorative tree shape in winter. ‘Dragon’, a recent import from China, was the most dwarf cultivar tested, with small fruit and gnarled trees, and suitable for four-season ornamental use in landscapes. ‘Mushroom’, another recent import from China, had the most decorative fruit shape among the four cultivars tested, with vigorous and productive plants. ‘Teapot’, also a recent import from China, had irregular fruit shapes and vigorous and productive plants. All four cultivars were good edible landscape plants depending on customers’ preferences and space availability/limitation.

Free access

Shengrui Yao, Junxin Huang and Robert Heyduck

Fifty-six jujube cultivars were observed for their flowering habits and fruiting characteristics at Alcalde, New Mexico. Jujube cultivars were classified as morning blooming type or afternoon blooming type. Among the 56 cultivars observed, 24 belonged to the morning type and 32 belonged to the afternoon type. Eighteen out of the 56 cultivars had their blooming type reported for the first time. The sepal splitting for morning type occurred from sunrise to 1000hr, whereas it occurred between 1300 and 1600 hr for the afternoon type. Even though their opening time differed, pollen release happened during daytime for both—morning type released pollen in the afternoon and afternoon type released pollen in the late afternoon and the next morning. Rainy and cloudy weather delayed blooming for several hours. Each flower experienced the following stages during blooming: sepal splitting, sepal flat, petal standing, petal and anther separation, petal flat and anther standing, anther flat, and stigma browning; the time and duration of each stage varied with cultivar and blooming type. Flower size varied by cultivar and helps with cultivar identification. Cultivars Li, Li-2, Redland, Qiyuexian, Xiangzao, Teapot, and Daguazao were self-pollinating/self-fruitful in New Mexico. For open pollination, fruit set varied greatly by cultivar. ‘Abbeville’ had the best fruit set each year. Most cultivars had better fruit set from open pollination than self-pollination; however, self-fruitful cultivars Li, Li-2, and Redland had better fruit set with self-pollination than open pollination in some years. Open pollination increased fruit size for all cultivars. ‘Zhongning’, ‘Abbeville’, ‘Jinsi-2’, and ‘Globe’ had high seed percentage from open-pollinated fruit, whereas ‘Lang’, ‘Don Polenski’, ‘Junzao’, and ‘Xingguang’ did not produce fully developed seed in any years but some dark brown empty seedcoat sacs. Seed development was also affected by weather and pollination conditions. Fruit blooming type, pollen release, self-pollination, self-fruitfulness, self-fertility, and seed development are all critical information for jujube breeders, researchers, extension personnel, and growers.

Restricted access

Junxin Huang, Robert Heyduck, Richard D. Richins, Dawn VanLeeuwen, Mary A. O’Connell and Shengrui Yao

Vitamin C profiles of 46 jujube cultivars were assessed from 2012 to 2015, and fruit nutrient dynamics of 10 cultivars during maturation were examined from 25 Aug. to 7 Oct. 2014 at 2-week intervals at New Mexico State University’s Alcalde Sustainable Agriculture Science Center and Los Lunas Agricultural Science Center. This is the first report in the United States profiling Vitamin C in jujube cultivars. The vitamin C content of mature fruit of 45 (of 46) cultivars ranged from 225 to 530 mg/100 g fresh weight (FW) plus ‘Youzao’ having the highest content of 820 mg/100 g FW at early mature stage. In general, drying cultivars had higher vitamin C content than fresh-eating cultivars whereas ‘Jinsi’ series (multipurpose) had relatively higher vitamin C content than others (>400 mg/100 g FW). Fruit vitamin C and moisture content decreased significantly during the maturation process. The average vitamin C contents of nine cultivars at Alcalde decreased more than 40% based on FW from 25 Aug. to 7 Oct. To maximize the vitamin C benefit, the ideal stage to consume fresh-eating cultivars is the creamy stage. Titratable acidity and soluble solids increased significantly during maturation. In mature jujubes, the titratable acidity and soluble solids ranged between 0.27% to 0.46% and 27.2% to 33.7%, respectively. Glucose, fructose, and sucrose content also rose significantly during ripening. Mature fruits contained 31–82 mg/g FW glucose, 32–101 mg/g FW fructose, and 53–159 mg/g FW sucrose among the cultivars tested. Based on sucrose contents, cultivars can be divided into two groups, “high-sucrose” (more sucrose than glucose or fructose) and “low-sucrose” (less sucrose than glucose or fructose). ‘Dagua’, ‘Honeyjar’, ‘Lang’, ‘Li’, ‘Maya’, ‘Sugarcane’, and ‘Sherwood’ belong to the “high-sucrose” group. Total phenolic content and 2,2-diphenyl-1-picrylhydrazyl (DPPH)-reducing capacity in fruit decreased during maturation, and the total phenolic content of mature jujube was 12–16 mg gallic acid equivalent (GAE)/g dry weight (DW). For mature fruit, ‘Li’ and ‘Li-2’ had the highest DPPH-scavenging efficiency whereas ‘Sugarcane’, ‘So’, and ‘Lang’ had the lowest at Alcalde, NM.

Open access

Shengrui Yao, Steve Guldan and Robert Heyduck

Late frost is the number one issue challenging fruit production in northern New Mexico. We had apricot (Prunus armeniaca) trees in an open field planting at Alcalde, NM, and not a single fruit was harvested from 2001 through 2014. Apricot trees in surrounding communities produce sporadic crops. In 2012, we planted apricots in two 16 × 40-ft high tunnels (9.5-ft high point). Trees were trained to a spindle system in one high tunnel and an upright fruiting offshoot (UFO) system in the other, and there were identical plantings in the open field for each high tunnel. Supplemental heating was provided starting at blooming time. There were five cultivars planted in each high tunnel at 4 × 8-ft spacing in a randomized complete block design with two replications (rows) and two trees per cultivar in each plot. In 2015, relatively high yields were obtained from all cultivars. The average yields for the spindle system were (lb/tree): ‘Puget Gold’ (29.0), ‘Harcot’ (24.1), ‘Golden Amber’ (19.6), ‘Chinese Apricot’ (18.6), and ‘Katy’ (16.7). Yields for the UFO system were (lb/tree): ‘Golden Amber’ (18.6), ‘Katy’ (14.9), ‘Puget Gold’ (11.3), ‘Chinese Apricot’ (10.2), and ‘Harcot’ (8.6). On average across all cultivars, the UFO system produced 60% of the yield of the spindle system in 2015. A heating device is necessary for high tunnel apricot fruit production in northern New Mexico because trees normally bloom in early to late March, depending on the year, while frosts can continue until mid-May. In years like 2017 and 2018 with temperatures below 10 °F in late February/early March, some of the expanded flower buds were killed before bloom. On those cold nights, one 100-lb tank of propane may or may not be enough for 1 night’s frost protection. Economically, it would not be feasible in those years. Only in years with a cool spring, late-blooming trees, and mild temperatures in April and May can high tunnel apricot production generate positive revenue with high, direct-market prices. High tunnel apricot production with heating devices is still risky and cannot guarantee a reliable crop in northern New Mexico or similar areas.

Open access

Robert F. Heyduck, Steven J. Guldan and Ivette Guzmán

In a two-part study, we examined the effect of sowing date and harvest schedule on the yield of spinach (Spinacia oleracea) grown during the winter in 16 × 32-ft-high tunnels in northern New Mexico. Each part of the study was conducted for two growing seasons and took place between 2012 and 2015. In Study A (2012–13 and 2013–14), spinach was sown four times at roughly 2-week intervals (mid-October, early November, mid-November, and early December) and plant density (plants per square foot), plant height (centimeters), and yield (grams per square foot) were measured for three harvests in mid-January, mid-February, and mid-March. The earliest sowing date had the least-dense stands, and plant density increased with each subsequent sowing. The two earliest sowing dates had significantly higher season-long yield than the later two sowings. In Study B (2013–14 and 2014–15), all plots were sown in mid-October, but harvest schedule treatments were staggered such that harvests began at 9, 11, 13, or 15 weeks after sowing and continued at irregular intervals. Treatment 2, with harvests beginning after 11 weeks, had the greatest season-long yield, slightly greater than when harvests began at 9 weeks, and significantly more than when harvest began 13 weeks or later. More importantly, a staggered harvest schedule can provide spinach weekly for direct marketing opportunities.