Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Robert H. Snyder x
Root distribution in turfgrass systems influences drought tolerance and resource competition with undesirable species. We hypothesized that spatial localization of phosphorus (P) supply would permit manipulation of turfgrass root distribution. To test this hypothesis, creeping bentgrass (Agrostis stolonifera L.) plants were exposed to localized P supply in two experiments. The first experiment split the root zone horizontally into two different growth tubes and the second used alumina-buffered P (Al-P) to localize P availability deeper within a continuous root zone. In the horizontally split root zones, heterogeneous P availability led to no difference in shoot growth compared with uniform P availability. Root proliferation was greatest in the growth tube with available P compared with the growth tube without P. The use of Al-P, regardless of its spatial distribution, doubled root-to-shoot ratios compared with soluble P. Much of the increase in the ratio was accounted for by reduced shoot growth. Use of Al-P increased rooting deeper in the root zone, especially when the Al-P was mixed only in the lower portion of the root zone. Our results are consistent with the hypothesis that root distribution of creeping bentgrass can be manipulated by spatial localization of P supply in the root zone and indicate that relative biomass allocation to roots and shoots may be manipulated with buffered P sources.
Sustainable agricultural systems favor high organic amendments over chemical fertilizers for maintaining long-term soil fertility. To study root responses bell pepper was grown in soil treated with dairy compost, raw dairy manure, and a chemical fertilizer mix at Rodale Institute Research Center, Kutztown, Pa. Root crowns were excavated at 2-week intervals and total length determined from root subsamples by computer-based image analysis. Roots from compost amended plots displayed a simple branching pattern; a first order branch with short second order branches. Fertilizer stimulated a complex branching; short, thickened first and second order branches that supported long and thin third and fourth order roots. An intermediate form in the raw dairy plots yielded both simple and complex branching forms. All forms were dynamic within each treatment over time. Crown length averaged 250-300 m across treatments 6 weeks after transplanting. Raw dairy and fertilizer treatments decreased slightly in length by week 10, while compost remained constant. After heavy rainfall crown length increased to 400 m for compost and raw dairy, and to 750 m for the fertilizer treatment by week 13. Length for the fertilizer treatment dropped nearly 200 m by week 14. though an increase of 100-200 m occurred for compost and raw dairy treated roots respectively.