Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Rita Giuliani x
Clear All Modify Search

Ground-based infrared thermal imagery was applied for early detection of plant water deficit, i.e., before photosynthetic activity is depressed and before growth processes are negatively affected by water shortage. Remote and real-time sensing of radiative canopy surface temperature was performed in Michigan in Summer 1999 on peach and apple orchards, using a digital IR imaging radiometer. Still images and videos were acquired on single canopies of well-watered plants and plants subjected to water depletion. Atmospheric parameters were monitored simultaneously. On apple trees, the apparent canopy temperature showed a wider thermal dispersion [10 °C], compared to peach tree canopies [2–5 °C]. Central tendency and shape parameters describing the canopy thermal distribution could identify, even for apple canopies, the thermal signal [1–2 °C] of plant water deficit, before changes in leaf net photosynthetic rate and fruit diameter were observed. The results of this study support the application of digital infrared thermal imagery and image processing for early recognition of plant water deficit. The decrease of the cost of available thermographic cameras makes their use feasible.

Free access

Infrared thermometry was applied to estimate the canopy temperature of apple trees with the aim to detect a water stress condition early by remote sensing. The measurements were taken in Michigan during Summer 1998 in a 4-year-old apple orchard. Digital thermo-images of the canopy were taken using a IR imaging radiometer on well-watered trees and trees in a water shortage condition. The images were taken considering the geometrical relationship among camera position, canopy, and sun position. During the measurements, environmental (air and soil) conditions were also monitored. A software program was developed to analyze the thermal data, to show the thermal frequency distribution and to estimate the statistical parameters, which are able to represent the physiological condition of the trees. An increase of the canopy surface temperature (connected to the partial stomatal closure that is affecting the leaf energy balance) was detected early in the non-irrigated plants, compared to the well-irrigated trees, already when physiological responses as photosynthetic activity and fruit growth were not yet negatively affected by water deficit. The study confirms that there are the theoretical basis to use infrared thermometry and digital image processing to early detect the water stress on fruit trees.

Free access

This work proposes a methodology, by light-scanning below the canopy, to directly estimate the photon flux radiation (400–1200 nm) intercepted by single or row canopies. The system is based on the assumption that the light intercepted by the canopy, at a particular time, corresponds to the difference between the incoming potential radiation on a ground surface area (able to include the ground area shaded by the canopy), and the actual radiation influx to that area in presence of the canopy. To this purpose, light-scanning equipment has been designed, built, and tested, whose main components are two aligned multi-sensor bars (1.2 m long) and a CR10 data logger, equipped with an AM 416 Relay Multiplexer (Campbell Sci. Ltd., U.K.). The radiation sensors (BPW 14N TELEFUNKEN) were chosen because of their spectral sensitivity, along with low cost. The sensors have been placed along the bars, at 5-cm intervals, and fitted with a Teflon® diffuser to provide a cosine correction. Radiation measurements are taken moving parallelly the bars on the ground, step by step, to monitor a sample point grid (5 cm by step length). Preliminary radiation scans were taken during the summer in a 3-year-old peach orchard, trained as delayed vasette. Measurements were taken for a single canopy at various hours of the day. Moreover, radiation scans were taken at the same hour, over a 3-day timespan, while gradually defoliating the canopy. A custom-built software program has been developed for data handling. Mathcad software (Mathsoft Inc., U.S.) has been used to display the canopy shade image projected on the ground, the quantum map of the monitored area, and to calculate the light influx on the whole canopy. Moreover, the light spots on the ground determined by foliage gaps have been identified and the amount of radiation reaching the ground has been be estimated.

Free access