Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Rida A. Shibli x
Clear All Modify Search
Free access

Rida A. Shibli and M.A.L. Smith

Ohelo (V. pahalae Skottsb.) and bilberry (V. myrtillus L.) shoots were regenerated via direct organogenesis from whole leaves and leaf sections and also from hypocotyl explants of bilberry. Explants preincubated for 1 to 2 weeks in darkness yielded ≈75% regeneration frequencies and the highest number of regenerating shoots/explant on TDZ-supplemented media (0.9 to 2.7 μm). When 2iP or zeatin were substituted as the cytokinin source, frequencies of regeneration and shoot productivity were significantly lower. Explants held under constant illumination (no dark pretreatment) had significantly lower regeneration frequencies in all tested cytokinin-supplemented media. 2,4-D stimulated callus formation, but did not support regeneration from vegetative explants. Cells from callus and suspension cultures did not exhibit regeneration in any of the media that supported organogenesis from leaves. Regenerants were successfully micropropagated, although callus formation caused by zeatin and high 2iP levels interfered with shoot proliferation. Zeatin induced hyperhydricity in shoots from both species, but more severely in ohelo. Ex vitro rooting after treatment with 4.9 μm IBA or 5.4 μm NAA was 95% and 60% successful for bilberry and ohelo, respectively, and plants were readily acclimatized after an interval in a fog chamber. Bilberry microshoots also rooted in vitro in the absence of growth regulator treatment. Chemical names used: 1H-indole-3-butanoic acid (IBA); N-(3-methyl-2-butenyl)-1-H-purine-6-amine (2iP); 6-furfurylaminopurine (kinetin); 1-naphthaleneacetic acid (NAA); thidiazuron=1-phenyl-3-(1,2,3-thiadiazio-5-yl)urea (TDZ); 2,4-dichlorophenoxyacetic acid (2,4-D); 6-(4-hydroxy-3-methylbut-2-enylamino) purine (zeatin).

Free access

Rida A. Shibli, M. Ajlouni, A. Jaradat and M. Shatnawi

Some factors that affect the in vitro conservation of wild pear (Pyrus syrica) microshoot cultures were studied. Sorbitol and mannitol at 0.2 to 4.0 M reduced growth significantly and extended the subculture intervals to 5 months when cultures where kept at 15°C. Increasing sucrose to 12% in the medium was not highly effective and the subculture intervals did not exceed 3.0 months. After 2 years of maintaining cultures on slow-growth medium, cultures grew slowly when transferred to fresh control medium. Shoots started to proliferate after three subcultures (6.0 weeks apart) on medium containing 1.0 mg/L BA and 0.1 mg/L NAA. New microshoots were rooted on medium containing 2.0 mg/L IBA and rooted microshoots gave 90% survival when acclimatized ex vitro under intermittent mist.