Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Ricky D. Kemery x
  • All content x
Clear All Modify Search
Full access

Ricky D. Kemery and Michael N. Dana

The objective of this study was to determine whether container size or incorporation of water-holding hydrogels in the container medium would affect growth of prairie perennials transplanted on a steep slope. Seedlings of pale-purple coneflower (Echinacea pallida Nutt.), rough blazingstar (Liatris aspera Michx.), gray-headed coneflower [Ratibida pinnata (Venten.) Barnh.], and little bluestem grass [Schizachyrium scoparium (Michx.) Nash.], were grown in 3.7-cm (1.46-inch) diameter tubes that were either 13 cm (5.1 inches) or 18 cm (7.1 inches) long containing either standard greenhouse mix or the mix amended with hydrogels Terra-sorb AG or Liqua-Gel, or a nonhydrogel experimental compound, GLK-8924. The seedlings were transplanted to the slope in May 1994, and harvested in June 1995. After two growing seasons, plants of pale-purple cone-flower and gray-headed coneflower from the longer containers were larger (dry weight) than those from the shorter containers. The blazingstar and little bluestem were unafffected by container size. Terra-sorb AG and Liqua-Gel did not significantly affect height growth of the prairie perennials. GLK-8924-amended medium resulted in smaller or similar height plants.

Full access

Ricky D. Kemery and Michael N. Dana

The objectives of this study were to compare the growth of prairie forb seedlings inoculated with vesicular-arbuscular mycorrhizal (VAM) fungi to noninoculated seedlings transplanted to a highway right-of-way and to evaluate the effect of different VAM fungal species or combinations on posttransplant seedling growth. Four species of prairie forbs: pale-purple coneflower (Echinacea pallida Nutt.), prairie blazingstar (Liatris pycnostachya Michx.), prairie phlox (Phlox pilosa L.), and gray-headed coneflower [Ratibida pinnata (Venten.) Barnh.], were grown in greenhouse mix and inoculated with Gigaspora margarita Becker and Hall, or Glomus interadicies Schenk and Smith, or with a native Indiana prairie soil inoculum, or with a mix of all three. They were transplanted to a highway site in June, 1994. Only gray-headed coneflower exhibited a positive growth response to VAM inoculation. Inoculation of gray-headed coneflower with G. margarita produced the largest growth response by the end of the experiment.

Free access

James J. Tobolski and Ricky D. Kemery

Dormant bud tissue from two or more trees representing 18 red maple (Acer rubrum L.) cultivars was subjected to isozyme analyses using starch-gel electrophoresis. Polymorphic enzymes resolved were alcohol dehydrogenase, peroxidase, phosphoglucase isomerase, glutamate oxaloacetate transaminase, leucine aminopeptidase, acid phosphatase, and malic dehydrogenase. An enzyme pattern or combination of patterns was useful in identifying individual cultivars, these included: `Autumn Blaze', `Autumn Flame', `Bowhall', `Celebration', `Columnare', `Curtis', `Doric', `Firedance', `Gerling', Y.J. Drake', `Morgan', `Northwood', `Scarlet Sentinel', `Schlesingeri', and `Tilford'. `Armstrong', `October Glory', and `Red Sunset' could not be distinguished from each other on the basis of enzymes examined in this study.

Free access

Michael N. Dana and Ricky D. Kemery

Interest in direct-seeding establishment of wildflowers as a component of landscape planting has continued to increase. Seed may be very expensive. Information is needed on the quality of seed available to consumers and the landscape industry. The goal of this work was to assess the level and consistency of seed quality available from the wildflower seed production/marketing industry. Eleven species of native prairie forb wildflowers and eight species of “garden” wildflowers from seven companies were purchased in 1992 and 1993 and subjected to germination testing. Germination procedures were those of AOSA where available, or generalized from the literature when no guidelines existed. Results showed significant variation among wildflower species, among companies supplying the same species, and over the two seed years tested in the study. These data reinforce the need for seed quality testing and reporting as a part of the sales of wildflower seed.

Free access

Ricky D. Kemery and Michael N. Dana

Fir seedling transplant containers were used as an alternative to conventional plug containers (72 per tray) in a system to grow seedlings of native prairie perennials and install them on a highway site in central Indiana. Plants grown in deep-tube fir-seedling containers exhibited greater fresh and dry weights than conventional plug transplants with no root circling. Results from survival data indicate that plants grown in fir seedling containers offer better chances of success on highway sites with low soil fertility and poor soil structure. A chronology of installation methods, tools, and mechanization possibilities is presented.

Free access

Ricky D. Kemery and Michael N. Dana

Seedlings of six species of native prairie perennial forbs were installed monthly from Oct. 1993 to Nov. 1994 on two highway sites near West Lafayette, Ind. Survival varied significantly among species. Overall, 85% of Aster novae-angliae seedlings survived compared to 15% survival of Liatris pycnostachya seedlings. Survival also varied significantly with time of installation. Three species (Aster novae-angliae, Ratibida pinnata, and Veronicastrum virginicum) exhibited 95% survival when planted in mid-October, compared to 50% survival when planted in March. Fifty-seven percent survival of Echinacea pallida seedlings was observed with April plantings, compared to 9% survival of September plantings. Results of this study indicate that transplant survival rates of particular prairie species may be enhanced by precise timing of planting in late fall or early spring.

Free access

Ricky D. Kemery and Michael N. Dana

Soil from four native prairie remnant sites was used as inoculum in pot culture to achieve vesicular–arbuscular mycorrhizal (VAM) infection of Sudangrass [Sorghum sudanense (Piper) Stapf]. The prairie sites varied in their management histories and degradation levels. Sudangrass plants that became infected with VAM grew better than those grown in standard pasteurized greenhouse mix or those grown in a pasteurized greenhouse–prairie soil mix. Soil from prairie remnants may serve as a beginning source of inoculum that can be increased via Sudangrass pot culture for inoculation of prairie plant seedlings in nursery production.