Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Richard Kiyomoto x
Clear All Modify Search
Free access

Richard K. Kiyomoto

Nursery production of Mountain Laurel (Kalmia latifolia L.) often involves manual disbudding or deadheading flower clusters immediately after flowering, to stimulate the formation of one or several new shoots. Experiments were initiated on populations of K. latifolia `Angel' (41 plants), `Snowdrift' (17 plants), and `Hoffman's Pink' (37 plants) to test the effectiveness of single applications of 0 (water control), 500, 1000, and 2000 ppm ethephon in reducing seed set and stimulating new shoot formation. Ethephon was applied on 9 June 1995 when an average of 52.9%, 53.4%, and 27.3% of the flowers were open in each flowering cluster of `Angel', `Snowdrift', and `Hoffman's Pink', respectively. On 17 to 19 July 1995, data were collected for numbers of green seed capsules per flower cluster and the number of new shoots per plant. One way analysis of variance showed the treatments had highly significant effects on seed capsule numbers per flower cluster and in stimulating the production of new shoots per plant in the three cultivars. The average number of green capsules per flower cluster and new shoots per plant for each cultivar treated with 2000 ppm ethephon were: 2.2 capsules and 57.2 shoots in `Angel', 1.1 capsule and 40 shoots in `Snowdrift', and 6.6 capsules and 39.3 shoots in `Hoffman's Pink'. In contrast, the controls had 20.1 capsules and 2.8 shoots in `Angel', 22.9 capsules and 8 shoots in `Snowdrift', and 27.3 capsules and 2 shoots in `Hoffman's Pink'.

Free access

Mark H. Brand and Richard Kiyomoto

Tissue proliferation (TP) of Rhododendron sp. is characterized by basal tumors that often develop into numerous dwarf shoots. Growers need to know if the TP condition will recur in plants grown from normal-appearing cuttings collected from plants with TP tumors. Stem cuttings of seven cultivars were collected from stock plants with TP [TP(+)] and without TP [TP(–)] and rooted. Plants were grown in containers outdoors for 2 years and were then evaluated for tumor formation and other TP-related morphological symptoms. Shoots of TP(+) plants were either similar in length to shoots of TP(–) plants, or were shorter, as was the case for `Boule de Neige', `Catawbiense Album', and `Montego'. Plants grown from TP(+) cuttings of all cultivars had more leaves per growth flush than did plants grown from TP(–) cuttings. `Holden', `Montego', and `Scintillation' TP(+) leaves were narrower than leaves from TP(–) shoots and had greater length: width ratios. Leaves of TP(+) `Montego' and `Scintillation' plants were shorter and smaller than leaves from their TP(–) counterparts. Tumors were not observed on any propagated plants, regardless of the TP status of cutting stock plants. To further test the influence of age and TP status of source plants used for cutting propagation, `Montego' plants were grown from cuttings collected from the following sources: 1) in vitro shoot cultures; 2) 3-year-old plants with TP; 3) 6-year-old plants with TP; and 4) TP(–) plants. Cuttings from TP(+) micropropagated plants less than 3 years old were more likely to develop tumors than were cuttings from older plants. Eighty-three percent of plants from microcuttings and 74% of plants from cuttings of 3-year-old TP(+) plants formed tumors, whereas no plants grown from 6-year-old TP(+) or TP(–) cuttings did so. Large tumors that surrounded half or more of the stem were more likely to develop on plants grown from microcuttings than on plants grown from the next youngest, 3-year-old TP(+), stock plants. Growers must be aware that cuttings from TP(+) plants may produce plants that exhibit morphological and growth abnormalities, possibly even including tumor redevelopment.

Free access

Richard K. Kiyomoto and Mark H. Brand

Experiments were conducted on tissue proliferation (TP) development and in vitro and ex vitro growth of tissues from plants with (TP+) and without TP (TP-). In 1993 the increase in TP in one-, two-, and three-yr-old `Holden' and `Besse Howells' was 3%, 52%. and 32% and 10%, 26% and 21%, respectively. No differential mortality was observed. Shoot tip cultures initated from TP+ and TP- `Montego' showed 10-12 mo were required for miniaturiziation and multiplication in TP- shoot tips and 4 mo in TP+ shoot tips. TP- cultures require 10 uM 2-iP for normal shoot proliferation; whereas TP+ cultures had to be transferred to hormone-free medium after 6 mo to maintain normal shoot morphology. Cutting propagation from TP- and TP+ plants older than 5 yr, showed persistence of morphological aberrations associated with TP+ plants.

Free access

Mark H. Brand, Yiqin Ruan and Richard Kiyomoto

To characterize the in vitro behavior of Rhododendron `Montego' with tissue proliferation (TP) to cytokinin and auxin, comparisons were made of normal [TP(–)], dwarf TP [TP(+) dwarf], and long TP [TP(+) long] shoot cultures. On basal medium TP(–) and TP(+), long shoots failed to multiply and had a low relative growth rate (RGR) of 0.1, whereas TP(+) dwarf shoots produced 31.8 shoots per tip, with most shoots being <5 mm long, and RGR was 0.3. Addition of 15 μm 2iP to basal medium induced the production of more than six shoots per TP(–) tip and doubled their RGR; TP(+) long shoots produced 16.8 shoots, most <5 mm long, and had an RGR of 0.3; TP(+) dwarf shoots produced only 16% as many shoots as on basal medium, but still exhibited an increase in RGR. Leaves from TP(–) and TP(+) sources failed to produce shoots on basal medium, but 74% of TP(–) leaves formed shoots when cultured on 1 μm IBA and 30 μm 2iP. TP(+) leaves were able to form shoot meristems on media containing only 5 μm 2iP (26% of explants), but these meristems failed to elongate into shoots. Calli from TP(–) leaves, TP(+) leaves, and TP(+) tumors grown on medium containing 10 μm NAA and 15 μm 2iP had higher RGRs than the same calli on basal medium during the first 8 weeks of culture. Over time, RGR decreased in both TP(–) and TP(+) leaf calli, but increased in TP(+) tumor callus. The increased RGR resulted from differentiation of shoot meristems on 85% of the calli between week 4 and week 8. Our results suggest that TP(+) tissues have altered hormone metabolism or sensitivity that leads to dramatic differences in in vitro behavior and probably contributes to tissue proliferation observed in whole plants. Chemical names used: 6-(γ,γ-dimethylallylamino) purine (2iP); indole-3-butyric acid (IBA); α-naphthaleneacetic acid (NAA).