Search Results

You are looking at 1 - 10 of 19 items for

  • Author or Editor: Richard Heerema x
Clear All Modify Search

The U.S. pecan (Carya illinoinensis) industry is important to the country in both economic and cultural terms. Although the industry has expanded its export markets considerably, domestic pecan consumption has remained relatively flat. Expanding a domestic market is an important risk management strategy. To diversify, industry stakeholders may need to focus effort on growing domestic demand for pecans and pecan products, yet relatively little is known about U.S. pecan consumers because the majority of available information is garnered from supply side (production) data. This study used a web-based panel survey of 1009 U.S. food consumers to explore the demographics of pecan consumers, gauge their current tree nut nutrition knowledge, and examine the preferences surrounding their pecan purchases. Almost three-quarters (74%) of survey respondents consume pecans; demographic differences were observed between respondents who consume pecans and those who do not. Respondents’ knowledge of general and tree nut nutrition concepts varied. Respondents most frequently purchase pecans from a grocery store, buy them shelled as a raw ingredient for baking/cooking, and consume pecans four to six times per year.

Full access

Spurs are the primary bearing unit in mature `Nonpareil' almond (Prunus dulcis (Mill.) D.A. Webb) trees. Our objective was to determine whether almond spurs behave autonomously with respect to various biological activities throughout the season. If autonomous, a spur's carbohydrate demands are met primarily by its own leaves and, therefore, the sink to source ratio of the spur itself is expected to be closely linked to its growth and development. In these experiments almond spurs differing in leaf area and/or fruit number were monitored for leaf development, fruit set, floral initiation, spur survival and carbohydrate storage. Previous-season spur leaf area had no relation to the number of leaves preformed within the dormant vegetative bud or final spur leaf area in the current season, but spurs which fruited in the previous season began spring leaf expansion later and current-season spur fruiting was associated with lower spur leaf area. There was little or no relationship between final percentage fruit set at the spur level and spur leaf area in either the current or previous seasons. Current-season spur leaf area was positively related to both spur flower bud number and spur winter survival. Carbohydrate storage in dormant spurs increased with increasing previous-season spur leaf area. These data are consistent with the concept of spur autonomy especially with regards to spur activities late in the season. The relationships of some of these same spur parameters to spur light exposure are currently being investigated.

Free access

Successful commercial pecan [Carya illinoinensis (Wangenh.) K. Koch] production relies on mitigation of alternate bearing, which is a function of pistillate flower production. Mechanisms of floral initiation in pecan are not well understood. Our objective was to assess the impact of select plant growth regulators (PGRs) on return bloom for commercial application in pecan trees grown in the Southwestern United States. A 2-year study evaluated effects of ethephon, aminoethoxyvinylglycine (AVG), and gibberellin GA3 (GA3) on subsequent season return bloom in fruiting and nonfruiting pecan shoots. Cultivars used were mature Western and immature Western and Pawnee. Effects of PGRs on return bloom of nonfruiting shoots were different from fruiting shoots. As compared with untreated control, a GA3 treatment on fruiting shoots of mature ‘Western’ trees increased the number of flowers per new shoot by 125%. For nonfruiting shoots on the mature ‘Western’ trees, the number of flowers per new shoot decreased significantly by all PGR treatments and as much as 93% for AVG. In previously nonfruiting shoots on the immature ‘Western’ trees, a GA3 treatment reduced the number of flowers per new shoot in the next season by 88.2%. Results from immature ‘Pawnee’ shoots did not show statistically significant differences. The effects of these PGRs on subsequent season flowering in pecan are complex. This study suggests that PGRs can be used to increase or decrease cropload through effects on return bloom and therefore have potential uses for mitigating alternate bearing.

Free access

Southwestern U.S. pecan [Carya illinoinensis (Wangenh.) K. Koch] orchard soils are typically alkaline and calcareous, making micronutrients such as manganese (Mn) poorly available for root uptake. Manganese is essential to the light reactions of photosynthesis (Pn), but the level of leaf Mn for optimum Pn in pecan is unknown. Our objective was to characterize the relationships of foliar Mn fertilizer applications and leaf Mn nutrition with Pn over a broad range of leaf Mn concentrations. Two experiments were conducted from 2011 to 2012 (Expt. 1) and in 2013 (Expt. 2) in immature, nonbearing ‘Pawnee’ and ‘Western’ pecan orchards near Las Cruces, NM. To create differential leaf tissue Mn concentrations, four Mn spray concentrations were applied foliarly: 0.00, 0.34, 0.68, and 1.3 g Mn/L (Control, Low, Medium, and High, respectively). In Expt. 2, we added a higher Mn concentration (2.7 g Mn/L). Repeated measurements of leaf Pn were made beginning 1 week following a Mn application using a portable Pn system. Across treatments in both studies, final leaf Mn concentrations ranged from 21 to 1488 µg·g−1. Leaves treated with 0.68 g Mn/L had higher Pn than the other treatments in each experiment. In 2013, Pn rates of the leaves treated with 0.68 g Mn/L increased 7.1% and 10.4% over the Control for ‘Pawnee’ and ‘Western’, respectively. Our data confirm an association between leaf tissue Mn and Pn; the leaf tissue Mn concentration at which Pn rates are optimized in immature pecan trees was estimated to be 151.64 (±17.3 se) µg·g−1 Mn.

Free access

In recent years, nickel (Ni) deficiency symptoms has been observed in commercial pecan [Carya illinoinensis (Wangenh.) K. Koch.] orchards in New Mexico. Nickel deficiency can cause a reduction in lignin formation, which could affect the risk for breakage on pecan tree shoots. Ni deficiency might furthermore disrupt ureide catabolism in pecan and, therefore, could negatively affect nitrogen (N) nutrition in the plant. The objective of this study was to identify the effects of Ni and N fertilizer applications, at two rates, on net photosynthesis (Pn), leaf greenness (SPAD), and branch lignin concentration in New Mexico’s nonbearing pecan trees. Sixty trees for year 2012 (Pawnee and Western cultivars) and 40 trees for year 2013 (Pawnee cultivar) were used at two New Mexico locations (Artesia and Las Cruces) to evaluate the effects of Ni and N on tree measures. Treatments were as follows: (1) High N plus Ni (+Ni); (2) Low N no Ni (−Ni); (3) High N −Ni; and (4) Low N +Ni. In 2012 and 2013, there was an increase in leaf greenness for each location and cultivar (tree group) through time (June to September). Photosynthesis measures in 2012 differed between tree group, time in the season, and N and Ni treatments. In 2013, Pn was influenced by tree group and time (P < 0.0001), but N and Ni interaction did not present a significant effect related to Ni benefits. Photosynthesis varied over time in 2012 and 2013, with an inconsistent pattern. In this study, Ni application at the high N rate had a negative effect on ‘Pawnee’ Pn early in the season at the Artesia site, but this application had a positive effect for ‘Western’ from Artesia at the low N level, also early in the season. Lignin content varied between tree groups only. The application of N and Ni did not affect lignin in pecan shoots. The results show an inconsistent pattern regarding the benefits of Ni on nonbearing pecan orchards for leaf greenness, Pn, and lignin content during the 2-year study. Future studies on Ni should focus on pecan trees exhibiting leaf Ni deficiency symptoms or on soils with less than 0.14 mg·kg−1 of DTPA extractable Ni, as well as the long-term effect of Ni on pecan growth and development to optimize the addition of Ni into an efficient fertilization program.

Open Access

Demand for New Mexico’s limited water resources coupled with periodic drought has increased the necessity for tree water status monitoring to guide irrigation scheduling of pecan (Carya illinoinensis) orchards. The objectives of this study were to assess the impact of water status developed during the flood irrigation dry-down cycles on photosynthesis (P n ), and gas exchange [stomatal conductance (g S) to H2O (g H2O), transpiration (E), and intercellular CO2 (c i )] and to establish values of midday stem water potential (Ψsmd) that are needed to maintain P n and gas exchange of pecan. We conducted the study simultaneously on two southern New Mexico mature pecan orchards from 2011 through 2013. Flood irrigation as determined by grower practice was used on both orchards and P n , g H2O, E, and c i were assessed at Ψsmd of –0.4 to –2.0 MPa. Photosynthesis and gas exchange were higher in pecan trees shortly after irrigation than trees exhibiting water deficit near the end of a flood irrigation dry-down cycle. The decline in P n was markedly noticeable when Ψsmd dropped below –0.9 MPa. We attributed the reduction in P n mostly to stomatal limitation. The decline in P n and g H2O exceeded 50% when Ψsmd ranged from –1.5 to –2.0 MPa. For those reasons, we recommended that pecan orchards be maintained at Ψsmd higher than –0.90 MPa to prevent significant reductions in carbon assimilation and gas exchange.

Free access

Insufficient fruit retention limits profitability of certain pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars. The present study examined efficacy of aminoethoxyvinylglycine (formulated as ReTain®; Valent BioSciences, Libertyville, IL), a natural ethylene inhibitor, for increasing crop-load through increased fruit retention in pecan trees grown at three distinct locations within the U.S. pecan belt. Several years of field studies found that timely postpollination ReTain® sprays [132 mg·L−1 a.i. (11.7 oz./acre)] to canopies could increase fruit retention of ‘Desirable’ and increase crop yield by 16% to 38% in trees carrying a “moderate to heavy” crop. ReTain® did not detectably increase fruit retention on trees carrying a “light” crop-load. The ReTain®-associated increase in yield of “heavy” crop-load trees did not necessarily decrease subsequent year yield. ReTain® appears to offer commercial potential as a crop-load management tool for ‘Desirable’ through regulation of Stage II drop (i.e., June-drop), but may not be efficacious for all cultivars.

Free access

Many growers fertigating their orchards with zinc–ethylenediaminetetraacetic acid (Zn-EDTA) are still using supplemental zinc foliar sprays because of a lack of confidence that soil-applied Zn-EDTA is supplying enough Zn to the trees. A field study was conducted in a pecan orchard located near San Simon, AZ, on 8-year-old ‘Wichita’ trees growing in an alkaline, calcareous Vekol loam soil to evaluate the effectiveness of supplemental foliar Zn sprays. All trees were fertigated with 6.0 kg⋅ha–1 Zn in the form of Zn-EDTA in 2018 and 11.0 kg⋅ha–1 Zn in 2019 and did not exhibit visible signs of Zn deficiency. Foliar treatments of 3.75 mL⋅L–1 urea–ammonium nitrate (UAN), 3.6 g⋅L–1 zinc sulfate monohydrate (ZnSO4·H2O), 3.6 g⋅L–1 ZnSO4·H2O with 3.75 mL⋅L–1 UAN, 11 mL⋅L–1 Zn-EDTA, and water alone were applied to individual fruiting shoot terminals of trees on two dates each in 2018 and 2019. Treatments were sprayed directly onto the leaves of the selected terminals. Zn-EDTA was included as a foliar treatment in 2019 only. Leaf photosynthesis was measured to determine the impact of leaf Zn concentrations on plant function. Midday stem water potential (MDSWP) was measured to verify that water stress was not limiting photosynthesis. Both measurements were taken about 2 to 4 weeks after the application of foliar treatments. MDSWP measurements indicated a lack of water stress and therefore no effect on photosynthesis. Leaf samples collected from untreated branches indicated that the average foliar Zn concentration of untreated leaves was 21.3 mg⋅kg–1 in 2018 and 15.7 mg⋅kg–1 in 2019. No differences were observed in photosynthesis rates of treated branches. No additional benefit to leaf photosynthetic function or appearance was observed from spraying Zn on foliage of trees fertigated with Zn-EDTA.

Open Access

Pecan [Carya illinoinensis (Wangenh.) K. Koch] growers are advised to control orchard floor vegetation when establishing new orchards, but there is not a set recommendation for vegetation control in mature orchards. The objective of this study was to measure the effect of orchard floor vegetation on water and nitrogen (N) status of flood-irrigated mature pecan trees. Four treatments studied were: completely vegetated orchard floor, vegetation-free inner area directly under the tree canopy with vegetation in the outer area, completely vegetation-free, and vegetated inner area under the canopy with a vegetation-free outer area. Treatments were organized as a 2 × 2 factorial structure with inner and outer treatment factors, both with levels vegetated and vegetation-free. Soil moisture and tree midday stem water potential (MSWP) were measured during irrigation cycles to evaluate the development of water stress in the pecan trees. Soil moisture data showed a significant outer main effect when the soil in the entire orchard was the driest, that is, just before irrigation events. Areas with vegetation cover that were exposed to full sun were significantly drier than shaded vegetated areas and vegetation-free areas in the orchard floor. However, this was not correlated with differences in tree water status as indicated by MSWP. Leaf tissue and soil analyses showed no significant differences in N concentrations among treatments in either year. Treatments with orchard floor vegetation in the outer area had significantly higher yield efficiency and marginally significant improvements in percent kernel fill and number of nuts per kilogram. Our findings suggest that there may be more benefits to maintaining orchard floor vegetation in mature orchards than were previously acknowledged.

Free access

Bulb onion (Allium cepa L.) is an economically valuable vegetable crop in the United States. Onion production is threatened by onion thrips, which are the vector for Iris yellow spot virus, which is the causal agent of Iris yellow spot (IYS). New Mexico State University (NMSU) breeding lines 12-236, 12-238, 12-243, and 12-337 have exhibited fewer IYS disease symptoms in the field; however, little is known about the effects of the disease on the photosynthesis rate (Pn). We hypothesized that these NMSU breeding lines would have a higher Pn than IYS-susceptible cultivars Rumba and Stockton Early Yellow. To test this hypothesis, a field study was conducted for 3 years at NMSU, and Pn was measured five times throughout each season at 2-week intervals. During bulb development and maturation, which occurred at 10 and 12 weeks after transplanting, all NMSU breeding lines exhibited a higher Pn when compared with that of an IYS-susceptible cultivar. Pn was highest at the end of the vegetative growth stage and decreased as bulbs approached maturation for all cultivars. Additionally, a high Pn at 10 and 12 weeks after transplanting coincided with high bulb weight at harvest. NMSU breeding lines have increased Pn compared with that of IYS-susceptible cultivars and resulted in larger and more marketable bulbs. These results indicate that maintaining Pn may be related to reduced IYS symptom expression of onion.

Open Access