Search Results
You are looking at 1 - 5 of 5 items for
- Author or Editor: Richard C. Rosecrance x
The ability of peach leaves to absorbed and translocated foliarly applied 15N-urea in mature peach (Prunus persica) trees was determined. Urea uptake experiments were conducted in June, October, and November 1995. Peach leaves absorbed ≈80% of the urea within 48 hr of application in all three experiments based on urea rinsed from leaf surfaces. Similarly, leaf 15N content reached a peak 48 hr after application. Translocation of 15N out of leaves, however, was more rapid in October then November. In October, 24% of the 15N remained in the leaves 2 weeks after application, while, in November, 80% stayed in the leaves and fell to the orchard floor. Thus, applying urea in mid November did not allow enough time for the N to be transported out of the leaves before leaf abscission. Timing of foliar urea application is critical to maximize N transport into perennial tissues of peach trees. 15Nurea resorption out of leaves and into perennial tree parts (roots, trunk, current year wood, etc.) is discussed.
The interrelationships between crop load, root growth, and nutrient uptake in mature, pistachio trees were examined in this study. Nutrient uptake was determined during the spring, summer, and fall using labeled nitrogen (15N) and boron (10B) and by differences in whole-tree accumulation between tree harvests for other nutrients (e.g., P, K, Ca, Zn). Nitrogen and boron uptake were double in fruiting compared with nonfruiting trees in the spring. Most of the labeled N was found in the developing fruits and leaves. Total labeled N recovery during the spring flush period, however, was low, indicating that much of the N in the fruit came from N reserves from within the tree rather than uptake from the soil. In contrast, significant amounts of N were taken up from the soil during the summer uptake period. Thus, our data support the hypothesis that sink demand (i.e., fruit development) conditions N uptake in pistachio. The relationship between root growth and N uptake was also examined in this study. Root observation chambers were constructed, and root growth determined by tracing roots growing up against the glass windows. Root length, root growth rate, relative root growth rate, and total tree fine root weight were all greater in nonfruiting compared to fruiting trees during the fruit development period (late May to mid-July). Surprisingly, fruiting trees had less root growth, but greater N uptake than nonfruiting trees during this period. This evidence suggests that N uptake is decoupled from root growth in mature pistachio trees.
The effect of crop load on nutrient and starch storage in mature, alternate-bearing pistachio trees was examined. Tree storage pools were estimated from the differences in nutrient and starch contents of perennial tree parts between dormancy (the period of highest nutrient and starch content) and following spring flush (the period of lowest nutrient and starch content). Following a lightly cropping (off) year, trees contained significantly larger N, P, and K storage pools than following a heavily cropping (on) year. The relative contribution of leaf nutrient resorption to tree nutrient storage pools varied depending on the crop load. Nutrient storage is a function of net leaf nutrient resorption and current uptake from the soil. Leaf nutrient (N, P, and K) resorption was a more significant component of nutrient storage in on-year than off-year trees. The contribution of nutrient storage to shoot (i.e., leaves, fruit, current-year wood) nutrient contents was evaluated following the spring flush (May) and nut fill (September) periods. Nutrient storage pools are an important source of nutrients during the spring flush of growth, but nutrient demands during nut fill are met primarily by current nutrient uptake from the soil. The relationships between nutrient storage and uptake are discussed.
Contributions of nitrogen (N) fertilizer applications to nitrate pollution of groundwater is an increasing public health concern. In an effort to improve N fertilizer efficiency, a study was initiated to determine periods of tree N demand in mature, alternate bearing pistachio trees. Seasonal patterns of nitrogen accumulation in the branches (i.e. fruit, current year wood, one year old wood, and leaves) and roots were monitored monthly.
Branches from heavily fruiting trees contained almost six times more nitrogen than branches from light fruiting trees by September; a result of the large amount of N accumulated in the fruit. Nitrogen accumulated in the branches during the Spring growth flush and nut fill periods in both heavy and light fruiting trees. Root nitrate and total N concentrations, however, peaked during the Spring growth flush and subsequently decreased during nut fill. The relationship between tree N demand and the capacity for N uptake is discussed.
The California table olive (Olea europaea L.) industry relies exclusively on hand harvesting of its primary Manzanillo cultivar. Increased harvesting costs have intensified industry interest in identifying an abscission agent that can be used with developing mechanical harvesting technologies to increase removal rates. Table olives are harvested immature green at horticultural maturity but before physiological maturity. The goal of this research was to reevaluate the potential of ethylene-releasing compounds (ERCs) as olive-loosening agents and to screen additional candidates previously shown to accelerate citrus fruit abscission. Eleven compounds were screened at two separate table olive-growing sites (Fresno and Tehama counties) in California in September until Nov. 2006. Compounds were applied at various concentrations alone or in combination. Fruit detachment force (FDF) and percent fruit drop were measured and leaf loss assessed. Of the compounds evaluated, the ERC ethephon (2-chloroethyl phosphonic acid) and 1-aminocyclopropane-1-carboxylic acid were the most efficacious. In whole tree applications, concentrations of ethephon or 1-aminocyclopropane-1-carboxylic acid above 1000 mg·L−1 reduced FDF to less than 50% of the untreated control within 17 days, but leaf drop increased with increasing concentrations. Addition of 1-methylcyclopropene reduced efficacy of ethephon and delayed leaf drop. Monopotassium phosphate + ethephon (4% and 1000 mg·L−1, respectively) reduced FDF and leaf loss was equivalent to the ethephon alone treatment. Compounds such as methyl jasmonate, coronatine, dikegulac, MAXCEL, traumatic acid, and 5-chloro-3-methyl-4-nitro-1H-pyrazole were not efficacious.