Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Richard C. Funt x
Clear All Modify Search
Free access

Richard C. Funt and Julian A.H. Nicholson

Free access

Richard C. Funt, M. Scott Biggs and Mark C. Schmittgen

Physiological disorders of apples, such as cork spot and bitter pit, are a result of low soil calcium, low or excessive soil moisture, large fruit size, and environmental conditions. We report on the effect of microirrigation treatments on apple fruit when irrigation is applied as water alone or water plus a calcium (Ca)/boron (B) solution with applications applied over the tree canopy or under the tree canopy. Apples were harvested from trees in their 4th to 7th leaf and the number of fruit and size of fruit varied from year to year. In most years, there were no significant differences among treatments for fruit Ca. Fruit B was significantly higher in treatments where B was applied through the irrigation. Fruit N/Ca levels were lower when the fruit size was smaller, which was due to a higher number of fruit per tree. Year to year variations in fruit Ca levels also were likely to temperature, humidity, rainfall, fruit size, and shoot growth.

Free access

Richard C. Funt, Mark C. Schmittgen and Glen O. Schwab

The performance of peach trees [Prunus persica (L.) Batsch cv. Redhaven/Siberian C.] on raised beds as compared to the conventional flat (unraised) orchard floor surface was evaluated from 1982 to 1991. The raised bed was similar to the flat bed in cation exchange capacity (CEC), Ca, P, K, Mg, B, and Zn soil levels in the 0-15 cm depth. Microirrigation, using two 3.7 L.h-1 emitters per tree vs. no irrigation, was applied to trees planted in a north-south orientation on a silt loam, noncalcareous soil. Raised beds increased trunk cross-sectional area (TCA) and yield-efficiency over 5 years. Irrigation increased fruit mass mostly in years of highest evaporation. Significant year to year variations occurred in yield, fruit mass, TCA and yield efficiency. There were significant bed × year interactions for yield and TCA. Irrigation increased leaf boron content regardless of bed type. Leaf potassium was higher in flat beds. Nonirrigated trees had the lowest tree survival on the flat bed, but the opposite was true on the raised bed.

Full access

John Clemens, Ewen A. Cameron and Richard C. Funt

Calla (Zantedeschia Spreng.) growers were studied as members of an expanding sector in the New Zealand floricultural industry. The calla sector is characterized by diverse-size firms scattered throughout the two main islands of New Zealand. Growers differ in their skill and experience with calla production. Problems are both grower-specific (e.g., control of diseases, postharvest disorders) and sector-wide. Examples of the latter include the prioritizing and funding research, interacting with science organizations and planning sector marketing strategy. Both sets of problems have been exacerbated by the progressive withdrawal of research and extension support services traditionally provided by government agencies. There is competition between the floriculture industry and calla sector-based grower organizations. The leadership role of a strong grower organization, in this case the New Zealand Calla Council (NZCC), is seen as an essential forum for growers, and as the link between growers, exporter organizations, scientists and central government. Good communications between the industry organization and growers is essential to identify and prioritizeproblems and to transfer information to individual growers through workshops, newsletters and manuals. To maintain its effectiveness, the NZCC does not satisfy the needs of smaller growers at the expense of the larger, influential growers. Rather, it seeks to the benefit the latter by upgrading the skill level of the industry, and by undertaking tasks too large for any individual business.

Free access

Richard C. Funt, Henry M. Bartholomew, Mark C. Schmittgen and John C. Golden

Annual yields of thornless blackberries may be inconsistent due to low winter or early spring temperatures. Under ideal conditions thornless blackberries can produce two or three times more berries per acre and ripen over a longer period of time than the erect, thorny type.

Yields of several thornless blackberry cultivars were improved by using straw mulch. In experiment one standard cultivars were compared to numbered clones. In experiment two Chester, Black Satin, Dirksen and C-65 were compared. Over a six year period, straw increased yields from 1670 to 8300 pounds per acre. Straw mulch appeared to be effective during years where low temperatures did not affect bearing surface.

Free access

Michele A. Stanton, Joseph C. Scheerens, Richard C. Funt and John R. Clark

We investigated the responses of staminate and pistillate floral components of Prime-Jan and Prime-Jim primocane-fruiting blackberry (Rubus L. subgenus Rubus Watson) to three different growth chamber temperature regimens, 35.0/23.9 °C (HT), 29.4/18.3 °C (MT), and 23.9/12.8 °C (LT). Temperature was negatively related to flower size, and morphologically abnormal floral structures were evident in 41% and 98% of the MT- and HT-grown plants, respectively. Anthers of LT- and MT-grown plants dehisced. The viability of pollen (as deduced through staining) from Prime-Jan grown at LT or MT exceeded 70%, whereas that of Prime-Jim pollen was significantly reduced (<40%) by the MT regimen. In vitro pollen germinability (typically <50%) was negatively influenced by temperature but was unaffected by cultivar. Pollen useful life was diminished under HT conditions; LT-grown pollen held at 23.9 °C retained 63% of its original germinability over a 32-h period, while the germinability of that held at 35.0 °C for 16 hours decreased by 97%. Virtually all flowers cultured under HT conditions were male sterile, exhibiting structural or sporogenous class abnormalities including petaloidy and malformation of tapetal cells or microspores; HT anthers that were present, failed to dehisce. Stigma receptivity, pistil density, and drupelet set were also negatively influenced by increased temperature; values for these parameters of floral competency among control plants were reduced by 51%, 39%, and 76%, respectively, in flowers cultured under HT conditions. In this study, flowering and fruiting parameters, and presumably the yield potential of Prime-Jan and Prime-Jim, were adversely affected by increased temperature. However, their adaptive response to heat stress under field conditions awaits assessment.

Free access

Michele A. Stanton, Joseph C. Scheerens, Richard C. Funt and John R. Clark

We investigated the response of staminate and pistillate floral components of Prime-Jan™ and Prime-Jim™ primocane-fruiting blackberry (Rubus L. subgenus Rubus Watson) to three different growth chamber temperature regimes, 35.0/23.9 °C (HT), 29.4/18.3 °C (MT), and 23.9/12.8 °C (LT). Temperature was negatively related to flower size and morphological abnormalities in floral structures were evident in 41% and 98% of the MT- and HT-grown plants, respectively. The viability (stainability) of pollen from LT- and MT-grown Prime-Jan™ flowers exceeded 70%; that of Prime-Jim™ pollen was significantly reduced (<40%) by the MT regime. Pollen in-vitro germinability was negatively influenced by temperature but was unaffected by cultivar. LT-grown pollen held at 23.9 °C retained 63% of its original germinability over a 32-hour period; the germinability of LT-grown pollen held at 35.0 °C was decreased by 97% from its original level after 16 hours. Virtually all flowers cultured under HT conditions were male-sterile, exhibiting structural and/or sporogenous class abnormalities including petaloidy, malformation of tapetal cells, and microspores or failure of dehiscence. The duration of stigma receptivity, pistil density, and drupelet set were also negatively influenced by increasing temperature; values for these parameters of floral competency among control plants were reduced by 51%, 39%, and 76%, respectively, in flowers cultured under HT conditions. Herein, flowering and fruiting parameters and presumably the yield potential of Prime-Jan™ and Prime-Jim™ were adversely affected by increased temperature. However, assessment of their adaptative response to heat stress under field conditions awaits experimentation.