Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Richard Anderson x
  • All content x
Clear All Modify Search
Free access

Neil O. Anderson and Richard T. Olsen

Luther Burbank (1849–1926) was a prolific ornamental plant breeder, who worked with 91 genera of ornamentals, from Abutilon to Zinnia, and released nearly 1000 cultivars to the industry. His innovative work included both herbaceous and woody plant materials as well as ornamental vegetables such as corn, tomatoes, and spineless cacti. His most popular ornamental release, the shasta daisy hybrids—first released in 1901, is still on the global market. This article focuses on Luther Burbank’s breeding techniques with ornamental plants and how both the germplasms that he developed and his methodologies used permeate modern flower breeding. Genera with the highest number of cultivars bred and released by Burbank include Amaryllis, Hippeastrum, and Crinum followed by Lilium, Hemerocallis, Watsonia, Papaver, Gladiolus, Dahlia, and Rosa. With Lilium, he pioneered breeding the North American native lily species, particularly those from the Pacific coastal region, producing the eponymous Lilium ×burbankii. Burbank’s breeding enterprise was designed to be self-sustaining based on profits from selling the entire product line of a new cultivar or crop only to wholesale firms, who then held exclusives for propagation and selling, although financial hardships necessitated selling retail occasionally. Entire lots of selected seedlings were sold to the highest bidder with Burbank setting the price in his annual catalogs such as the Burbank Hybrid Lilies lot for U.S. $250,000 or some of the “very handsome, hardy ones” for U.S. $250 to U.S. $10,000 each. Other flower cultivars also commanded high prices such as seedling Giant Amaryllis that sold for U.S. $1.55/bulb in 1909. Cacti were another area of emphasis (he released more than 63 cultivars) from the spineless fruiting and forage types (Opuntia ficus-indica, O. tuna, O. vulgaris) to flowering ornamentals such as O. basilaris, Cereus chilensis, and Echinopsis mulleri. Interest in cacti during 1909–15 rivaled the Dutch Tulip mania with exorbitant fees for a single “slab” of a cultivar, speculative investments, controversy with noted cacti specialists (particularly David Griffiths), and lawsuits by The Burbank Company. Although most cultivars have been lost, Burbank’s reputation as the Father of American Ornamental Breeding remains admirable from critics and devotees alike.

Free access

Kuanglin Chao, Richard S. Gates, and Robert G. Anderson

Knowledge engineering offers substantial opportunities for integrating and managing conflicting demands in greenhouse crop production. A fuzzy inference system was developed to balance conflicting requirements of producing a high-quality, single-stem rose crop while simultaneously controlling production costs of heating and ventilation. An adaptive neuro-fuzzy inference system was built to predict the rose status of `Lady Diana' single-stem roses from nondestructive measurements. The fuzzy inference system was capable of making a critical decision based on the principle of economic optimization. Temperature set points for two greenhouses with similar rose status were treated significantly different by the fuzzy inference system due to differences in greenhouse energy consumption. Moderate reduction in heating energy costs could be realized with the fuzzy inference system.

Open access

Asmita Paudel, Youping Sun, Larry A. Rupp, and Richard Anderson

Full access

Larry A. Rupp, Richard M. Anderson, James Klett, Stephen L. Love, Jerry Goodspeed, and JayDee Gunnell

In response to a perceived need for the development and introduction of superior plant accessions for use in sustainable, low-water landscaping, land-grant universities in Colorado, Idaho, and Utah, have supported plant development programs. Each of these programs has unique characteristics and protocols for releasing plant materials and obtaining royalties to further support research and development. Colorado State University (CSU) is part of the Plant Select program, which evaluates and promotes native and non-native plants for use in low-water landscapes. Selected plants are released to commercial members who pay a membership fee and royalties for access to the selected plants. The University of Idaho focuses on selecting and evaluating native herbaceous perennials, which are then released through a contract and royalty program with a local nursery. Utah State University uses the Sego Supreme program to select, propagate, and evaluate native plants. Selected plants are released to interested growers who pay a royalty for production rights.

Full access

Asmita Paudel, Ji Jhong Chen, Youping Sun, Yuxiang Wang, and Richard Anderson

Sego SupremeTM is a designated plant breeding and introduction program at the Utah State University Botanical Center and the Center for Water Efficient Landscaping. This plant selection program introduces native and adapted plants to the arid West for aesthetic landscaping and water conservation. The plants are evaluated for characteristics such as color, flowering, ease of propagation, market demand, disease/pest resistance, and drought tolerance. However, salt tolerance has not been considered during the evaluation processes. Four Sego SupremeTM plants [Aquilegia barnebyi (oil shale columbine), Clematis fruticosa (Mongolian gold clematis), Epilobium septentrionale (northern willowherb), and Tetraneuris acaulis var. arizonica (Arizona four-nerve daisy)] were evaluated for salt tolerance in a greenhouse. Uniform plants were irrigated weekly with a nutrient solution at an electrical conductivity (EC) of 1.25 dS·m−1 as control or a saline solution at an EC of 2.5, 5.0, 7.5, or 10.0 dS·m−1 for 8 weeks. After 8 weeks of irrigation, A. barnebyi irrigated with saline solution at an EC of 5.0 dS·m−1 had slight foliar salt damage with an average visual score of 3.7 (0 = dead; 5 = excellent), and more than 50% of the plants were dead when irrigated with saline solutions at an EC of 7.5 and 10.0 dS·m−1. However, C. fruticosa, E. septentrionale, and T. acaulis had no or minimal foliar salt damage with visual scores of 4.2, 4.1, and 4.3, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. As the salinity levels of treatment solutions increased, plant height, leaf area, and shoot dry weight of C. fruticosa and T. acaulis decreased linearly; plant height of A. barnebyi and E. septentrionale also declined linearly, but their leaf area and shoot dry weight decreased quadratically. Compared with the control, the shoot dry weights of A. barnebyi, C. fruticosa, E. septentrionale, and T. acaulis decreased by 71.3%, 56.3%, 69.7%, and 48.1%, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. Aquilegia barnebyi and C. fruticosa did not bloom during the experiment at all treatments. Elevated salinity reduced the number of flowers in E. septentrionale and T. acaulis. Elevated salinity also reduced the number of shoots in all four species. Among the four species, sodium (Na+) and chloride (Cl) concentration increased the most in A. barnebyi by 53 and 48 times, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. In this study, C. fruticosa and T. acaulis had minimal foliar salt damage and less reduction in shoot dry weight, indicating that they are more tolerant to salinity. Epilobium septentrionale was moderately tolerant to saline solution irrigation with less foliar damage, although it had more reduction in shoot dry weight. On the other hand, A. barnebyi was the least tolerant with severe foliar damage, more reduction in shoot dry weight, and a greater concentration of Na+ and Cl.

Free access

Neil O. Anderson, Peter D. Ascher, Richard E. Widmer, and James J. Luby

The generation time (0.75 to 1.5 years) in perennial, hexaploid chrysanthemums [Dendranthema grandiflora Tzvelv. (Chrysanthemum morifolium Ramat.)] impedes the rate of progress for sexual breeding programs in creating new clonal cultivars, inbred lines for hybrid seed production, and genetic studies. Modifications to the crossing environment and embryo rescue were evaluated to minimize the chrysanthemum generation cycle. One greenhouse chrysanthemum clone was outcross-pollinated using a bulk pollen source. Following emasculation, inflorescences were either left in situ or the peduncle bases were placed in styrofoam boards floating on a solution of 1% sucrose and 200 ppm 8-HQC under laboratory conditions. Embryogenesis occurred at a faster rate under laboratory conditions as tested with histological techniques; the heart stage appeared as early as the second day after pollination, compared with 11 days using in situ methods. Total embryogenic development time ranged from 25 (laboratory seed development) to 52+ days (in situ ripening). In a second test, embryo rescue (ER) significantly improved percent seed set, percent germination, and percent of progeny reaching anthesis relative to normal development. ER progeny from both garden parents were significantly earlier in total generation time than corresponding non-ER siblings. Laboratory seed development and ER were then used sequentially to obtain an average progeny generation time of =100 days, thus allowing for three generations per year. The potential impact of these two techniques on breeding chrysanthemums and other perennial crops with long generation times is discussed.

Free access

Schuyler D. Seeley, Hossein Damavandy, J. LaMar Anderson, Richard Renquist, and Nancy W. Callan

Foliar applications of growth regulators (GR) in early autumn induced leaf retention (LR) on peach [Prunu,s persica (L.) Batsch.] and `Montmorency' tart cherry (Prunus cerasus L.) trees. In `Johnson Elberta' peach, the relative effectiveness of GRs on LR was NAA = Promalin (BA + GA4+7) > GA4+7 > GA3 > BA > control, and on leaf detachment pull force (PF) NAA > BA + GA4+7 > GA4+7 = GA3 > BA3 > BA > control. Relative GR-induced chlorophyll (CL) content in retained leaves was BA + GA4+7 > GA4+7 > GA3 > BA > control > NAA. Relative xanthophyll (XN) content of retained leaves was NAA > control > BA > GA3 = GA4+7 = BA + GA4+7. Treating only half of a peach tree with NAA did not affect LR on the untreated side. NAA decreased subsequent bud and flower size in peach. Bud hardiness was enhanced by NAA in `Johnson Elberta' peach but not in `Redhaven' peach or in `Montmorency' tart cherry. NAA increased hardening on both the leafy treated (foliated) and untreated (defoliated) sides of half-treated `Johnson Elberta' trees. Increased endodormancy duration, as measured by GA3 forcing of terminal leaf buds, was proportional to LR. Chemical names used: N-(phenylmethyl)- 1H-purin-6-amine (BA); (1a,2ß,4bß,10ß)-2,4a,7-trihydroxy-l-methyl-8-methylenegibb-3-ene-l,lO-dicarboxylic acid,l,4a-lactone (GA3, GA4+7); l-naphthaleneacetic acid (NAA).