Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Riccardo Gucci x
Clear All Modify Search

An alternative method to managing olive (Olea europaea L.) orchards for oil production is described. Using the coppiced system, the orchard is divided into 10 plots and all trees in one plot are coppiced year 1, all trees in a second plot are coppiced year 2, etc. In this way, the olive orchard consists of 10 different-aged plots after 10 years. Then a new cycle is started by coppicing trees in plot 1 in year 11, those in plot 2 in year 12, and so on. Since hardly any pruning is done after coppicing, the main advantages of this innovative management method are to reduce labor costs and the need for skillful labor, without negative effects on fruit yield, oil yield, or alternate bearing. Pesticide application, weed control, and fertilization were performed according to standard commercial practice. As a result, this system is more convenient than other training systems used for olive trees, it is suitable for renewing old trees, and can be adopted under many cultural conditions. The coppiced management system is compatible with soils of low fertility and is sustainable for long-term olive oil production.

Full access

Water relation parameters were calculated from analysis of 92 pressure-volume isotherms of leaves of two olive varieties, `Leccino' and `Frantoio', measured after 4 weeks of salinity stress and 4 weeks of subsequent relief either in hydroponics or soil culture. `Frantoio' was more salt-tolerant than `Leccino', but no major differences in water relation parameters emerged between the two varieties. Increasing salinity from 0 to 200 mM NaCl decreased predawn leaf water potential from –0.5 MPa to –1.3 MPa, relative water content (RWC) from 97.6% to 89%, and leaf osmotic potential (Ψπ) from –2.0 to –3.5 MPa. Relative water content at turgor loss point (RWCtlp) was decreased from 89% to 85% (soil culture) and from 86% to 80% (hydroponic culture) in 0 to 200 mM CaCl-treated plants, respectively; a lower RWCtlp was also retained during the relief from salinity. Active osmotic adjustments induced by salinity was the result of accumulation of both inorganic ions and compatible solutes (e.g., mannitol). Maintenance of lower Ψπ and RWCtlp during relief indicated that salinized plants were better adapted to withstand further stress and that this potential might be exploited to harden olive plants to be used in arid or saline environments.

Free access

Photosynthetic rates (A) in celery-(Apium graveolens L.) and other polyol-synthesizers are sometimes high for C, species. In celery such rates have been related to a low CO2 compensation point typical of C4 and C3-C4 intermediate spp, although other data show celery photosynthesis as typically C3 Therefore, celery gas exchange was here reanalyzed, and while A was high (CO2 assimilation rates were 21.2 and 27.6 μ mol m-2s-1, average and maximum, photosynthesis was otherwise C,: CO, comp pt of 3.5-5.0 Pa, carboxylation efficiency of 0.99 μmol CO2m-2s-1Pa-1, light comp pt of 8-36 μ mol photon m-1s-1, optimum temp of 22-27°C for Amax. High A may relate to a capacity to synthesize both mannitol and sucrose. 14C pulse-chase studies, with different A obtained by imposing light gradients across opposite leaflets, showed 1-10% increases in mannitoll sucrose labelling. Higher A may reflect carbon partitioning into mannitol, agreeing with a hypothesis that polyol synthesis effectively recycles reductant in the cytosol.

Free access

Water deficit was applied between 4 and 9 weeks after full bloom by withholding irrigation from 3-year-old Olea europaea L. (`Leccino') plants grown in 2 L containers in a greenhouse. At 6, 8, and 22 weeks after full bloom (AFB), fruit were sampled for fresh weight and volume determinations, and then fixed for anatomical studies. Structural observations and measurements were performed on transverse sections at the point of widest fruit diameter using image analysis. Water deficit applied between 4 and 9 weeks AFB produced a significant decrease in predawn leaf water potential, which reached minimum values of -3.1 MPa. The applied water deficit reduced fruit fresh weight and volume at 8 and 22 weeks AFB. Fruit transverse area of the water deficit treatment was 50%, 33%, and 70% of the irrigated one at the 6-, 8-, and 22-week sampling dates, respectively. Mesocarp growth occurred for both irrigated and water deficit plants between 8 and 22 weeks AFB. At 22 weeks AFB differences between treatments were significant for mesocarp transverse area, but not for endocarp area. Mesocarp cell size, indicated by area, was significantly different between treatments at 8 and 22 weeks AFB. However, the mesocarp cell number was similar for both treatments at all times, and most mesocarp cells were produced by 6 weeks AFB. The growth of endocarp area showed the greatest shift in timing in response to the early water deficit. Ninety percent of endocarp growth had occurred by 8 weeks AFB in the irrigated treatment, but only 40% when the deficit irrigation treatment was imposed.

Free access

Net photosynthesis, dark respiration, chlorophyll and carbohydrate content, and leaf and shoot growth of deciduous peach [Prunus persica (L.) Batsch] saplings, grown in greenhouse conditions, were measured to assess changes in carbon balance during leaf development. The 6th, 12th, and 16th leaf node were measured from the first flush at the base through expansion to maturity (the first node being the oldest). Shoot and leaves expanded following a sigmoid pattern in all nodes. The shape of the logistic curve did not vary between the 6th and the 16th leaf node, while the 12th leaf node showed a steeper response, suggesting that the latter reached 50% expansion relatively earlier. Photosynthesis varied with leaf development as young leaves had low CO2 assimilation rates that were reflected in their chlorophyll concentration. Net daily CO2 assimilation was negative in young expanding leaves. The sink-source transition, defined to be the time when the increase in daily carbohydrate exchange rate exceeded the daily increase in leaf carbohydrate content, occurred before full leaf expansion. The transition from import to export was attained 11-12 days after budbreak (corresponding to 41% to 45% of full leaf expansion) for the 6th leaf, about 7-9 days after (38% to 52% of full expansion) for the 12th leaf and after 9-10 days (32% to 38% of full expansion) for the 16th leaf. Below 30% to 50% of full expansion leaves might not respond to assimilate requirements from sinks, being sinks themselves.

Free access

Net photosynthesis, dark respiration, chlorophyll and carbohydrate content, and leaf and shoot growth in plants of evergreen olive (Olea europaea L.) grown under controlled conditions were measured to assess changes in carbon balance during leaf development of the 6th, 12th, and 16th node (from the base, first flush) through expansion to maturity. Shoot and leaves expanded in a sigmoid pattern with differences among nodes. Photosynthesis varied with leaf development; young leaves had low CO2 assimilation rates that were reflected in their chlorophyll concentration. Net daily CO2 assimilation was negative in young expanding leaves. The sink-source transition, defined to be the time when the increase in daily carbohydrate exchange rate exceeds the daily increase in leaf carbohydrate content, occurred before full leaf expansion, between 10% and 30% expansion depending on the node.

Free access

Mature fruits of Olea europaea L. ‘Frantoio’ with different degrees of damage [from 0% to 100% of fruits with exit holes (EHs)] caused by the olive fruit fly (Bactrocera oleae), the key pest in Mediterranean olive orchards, were sampled to quantify the effects on free acidity, peroxide value (PV), and concentrations of secoiridoids and lignans of virgin olive oil (VOO). The total concentration of phenolic compounds and that of individual secoiridoids were negatively related to the degree of fruit damage, whereas the concentration of lignans, namely (+)-pinoresinol and (+)-1-acetoxypinoresinol, was unaffected. Free acidity was similar for the 0% and 10% EH treatments, increased sharply between 10% and 30% EH, and was similar again for the 60% and 100% EH treatments. Free acidity values were low and well within the limit for VOO classification even after 6 months of oil storage. Peroxide value responded to both B. oleae damage and storage conditions. Peroxide values increased between 10% and 30% EH treatments but changed little between the 30% and 100% EH treatments regardless of oil storage conditions. Secoiridoid concentrations closely reflected the degree of B. oleae damage when sources of variability such as cultivar and cultural practices were kept under control and conditions of processing and oil storage were optimal.

Free access