Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Ricardo Hernández x
Clear All Modify Search
Free access

Ricardo Hernández and Chieri Kubota

To increase the available photosynthetic photon flux (PPF) for plant growth, greenhouse growers sometimes use electric lighting to supplement solar light. The conventional lighting technology used to increase PPF in the greenhouse is high-pressure sodium lamps (HPS). A potential alternative to HPS is high-intensity light-emitting diodes (LEDs). The objective of this study is to compare supplemental LED lighting with supplemental HPS lighting in terms of plant growth and morphology as well as discuss the energy use efficiencies of the fixtures. There were three light treatments: 1) blue LED (peak wavelength 443 nm); 2) red LED (peak wavelength 633 nm); and 3) HPS, to provide 3.7 ± 0.2 mol·m−2·d−1 (background solar radiation of 6.3 ± 0.9 mol·m−2·d−1). Cucumber (Cucumis sativus) plants at the transplanting stage (26 to 37 days) under HPS had 28% greater dry mass than did plants under the LED treatments. This can be attributed to the higher leaf temperature under the HPS treatment. No differences were observed in growth parameters (dry mass, fresh weight, or number of leaves) between the blue and red LED treatments. Plants under the blue LED treatment had greater net photosynthetic rate and stomatal conductance (g S) than those under the red LED and HPS treatments. Plants under the blue LED and HPS treatments had 46% and 61% greater hypocotyl length than those under the red LED, respectively. The fixture PPF efficiencies used in the experiment were 1.9, 1.7, and 1.64 μmol·J−1 for the blue LED, red LED, and HPS treatments, respectively; however, the fixture growing efficiency (g·kWh−1) of HPS was 6% and 17% greater than the blue LED and red LED treatment, respectively. In summary, supplemental red LED produced desirable plant compactness and HPS had greater fixture growing efficiency than LEDs.

Free access

Tomomi Eguchi, Ricardo Hernández and Chieri Kubota

Intumescence injury is an abiotic-stress-induced physiological disorder associated with abnormal cell enlargement and cell division. The symptom includes blister- or callus-like growths on leaves, which occur on sensitive cultivars of tomato when they are grown under ultraviolet (UV)-deficit light environment, such as light-emitting diodes (LEDs). Previous studies suggest that intumescence can be reduced by increasing far-red (FR) or blue light. In the present study, effects of end-of-day FR (EOD-FR) light and high blue photon flux (PF) ratio during the photoperiod on intumescence injury were examined using ‘Beaufort’ interspecific tomato rootstock seedlings (Solanum lycopersicum × Solanum habrochaites), a cultivar highly susceptible to intumescence injury. Our study showed that EOD-FR light treatment moderately suppressed intumescence injury. Using EOD-FR light treatment, the percent number of leaves exhibiting intumescences was reduced from 62.0–70.7% to 39.4–43.1%. By combining high blue PF ratio (75%) during the photoperiod and EOD-FR light treatment, the percent number of leaves exhibiting intumescences was further suppressed to 5.0%. Furthermore, the combination of high blue PF ratio and EOD-FR light treatment inhibited undesirable stem elongation caused by EOD-FR light treatment. We found that high blue PF ratio during the photoperiod combined with a small dose of EOD-FR lighting (≈1 mmol·m−2·d−1 provided by 5.2 µmol·m−2·s−1 FR PF for 3.3 minutes) could inhibit the problematic intumescence injury of tomato plants grown under LEDs without negatively influencing growth or morphology.

Full access

Elsa S. Sánchez, Ermita Hernández, Mark L. Gleason, Jean C. Batzer, Mark A. Williams, Timothy Coolong and Ricardo Bessin

The goal of this study was to develop a systems-based strategy for organic muskmelon (Cucumis melo var. reticulatus) in Pennsylvania (PA), Iowa (IA), and Kentucky (KY) to manage bacterial wilt (Erwinia tracheiphila) and nutrients while safeguarding yield and enhancing early harvest. Spunbond polypropylene rowcovers deployed for different timings during the growing season were evaluated for suppressing bacterial wilt and locally available compost was applied based on two different estimated rates of mineralization of organic nitrogen (N) to manage nutrients. In KY only, the use of rowcovers suppressed bacterial wilt incidence compared with not using rowcovers. However, the timing of rowcover removal did not impact wilt incidence. Under lower cucumber beetle [striped cucumber beetle (Acalymma vittatum) and spotted cucumber beetle (Diabrotica undecimpunctata howardi)] pressure in PA and IA, rowcovers did not consistently suppress season-long incidence of bacterial wilt. In four of five site-years in PA and IA, more marketable fruit were produced when rowcovers were removed 10 days after an action threshold (the date the first flower opened in PA; the date when ≥50% of plants in a subplot had developed perfect flowers in IA and KY) than when no 10-day delay was made or when no rowcovers were used. In addition, the no-rowcover treatment consistently had lower weight per marketable fruit. In KY, the same action threshold without the 10-day delay, followed by insecticide applications, resulted in the largest number of marketable fruit, but did not affect marketable fruit weight. In PA, marketable yield was higher using compost compared with the organic fertilizer in 1 year. No yield differences were observed by nutrient treatments in 2 years. In IA, marketable yield was lower with the low amount of compost compared with the organic fertilizer and yields with the high amount of compost were not different from the low amount or the organic fertilizer in the year it was evaluated. In KY, marketable yield was unaffected by the nutrient treatments in the year it was evaluated. Given these results, muskmelon growers in PA, IA, and KY who use compost may choose the lower compost rate to minimize production costs. Overall, these findings suggest that rowcover-based strategies for organic management of bacterial wilt need to be optimized on a regional basis, and that fertilization with compost is compatible with these strategies.

Restricted access

Cristián Vela-Hinojosa, Héctor B. Escalona-Buendía, José A. Mendoza-Espinoza, Juan M. Villa-Hernández, Ricardo Lobato-Ortíz, Juan E. Rodríguez-Pérez and Laura J. Pérez-Flores

Antioxidants, antioxidant capacity, and the expression of isoprenoid metabolism–related genes and two pigmentation-related transcription factors were studied in four native and four hybrid tomato (Solanum lycopersicum) genotypes with different-colored fruit. Red fruit genotypes were associated with greater lycopene, β-carotene, lipophilic antioxidant capacity, and greater chromoplast-specific lycopene β-cyclase (CYC-B) transcript levels. Orange fruit genotypes had greater concentrations of tocopherols and greater transcript levels of homogentisate phytyl transferase (VTE-2), 1-deoxy-D-xylulose phosphate synthase (DXS), and 4-hydroxyphenylpyruvate dioxygenase (HPPD). The yellow fruit genotype was greater in total polyphenol and hydrophilic antioxidant capacity with greater expression of geranylgeranyl reductase (GGDR), phytol kinase (VTE-5), phytoene synthase (PSY) 2, lycopene β-cyclase (LCY-B), SlNAC1, and SINAC4. Greater levels of individual antioxidants were associated with specific coloration of tomato fruit. Moreover, the negative correlations between the expression of PSY1 and VTE-5, and between lycopene and chlorophyll, suggest a balance between carotenoids, tocopherols, and chlorophylls. The results of this study support either the direct commercialization of tomatoes with different color fruit or use of their genotypes in breeding programs to increase antioxidant levels among existing cultivars.

Restricted access

Celina Gómez, Christopher J. Currey, Ryan W. Dickson, Hye-Ji Kim, Ricardo Hernández, Nadia C. Sabeh, Rosa E. Raudales, Robin G. Brumfield, Angela Laury-Shaw, Adam K. Wilke, Roberto G. Lopez and Stephanie E. Burnett

The recent increased market demand for locally grown produce is generating interest in the application of techniques developed for controlled environment agriculture (CEA) to urban agriculture (UA). Controlled environments have great potential to revolutionize urban food systems, as they offer unique opportunities for year-round production, optimizing resource-use efficiency, and for helping to overcome significant challenges associated with the high costs of production in urban settings. For urban growers to benefit from CEA, results from studies evaluating the application of controlled environments for commercial food production should be considered. This review includes a discussion of current and potential applications of CEA for UA, references discussing appropriate methods for selecting and controlling the physical plant production environment, resource management strategies, considerations to improve economic viability, opportunities to address food safety concerns, and the potential social benefits from applying CEA techniques to UA. Author’s viewpoints about the future of CEA for urban food production are presented at the end of this review.