Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Renée M. Goodrich-Schneider x
  • HortTechnology x
Clear All Modify Search

It has been reported that netted muskmelons (Cucumis melo var. cantalupensis) treated with moist heat (steam or hot-water immersion) have reduced populations of vegetative surface organisms that may be responsible for spoilage, or that may be pathogenic to consumers. It is unknown, however, what affect a similar heat treatment may have on infesting bacterial endospores (which are dormant, nonreproductive structures that are resistant to environmental stress). Also, any heat treatment used must be effective without exceeding the treated melon's thermal damage threshold. In this study, natural microflora on muskmelon rind pieces treated from 75 to 95 °C for 3 minutes and whole fruit rinds inoculated with Bacillus atrophaeus spores and treated at 85 °C for 3 minutes were observed as a model system to explore the efficacy of moist heat in reducing surface populations of bacterial spores. There were significant reductions in populations of aerobic, nonspore-forming microbes, although the treatments had little to no effect on either the recoverable populations of inoculated B. atrophaeus spores or indigenous spore-forming bacteria. Recovery studies suggested a less than 2 log10 unit reduction of inoculated B. atrophaeus spores after a 3-minute, 85 °C moist heat treatment, and no heat injury symptoms developed on melons during storage for 2 weeks at 5 °C. Increasing treatment temperature from 75 to 95 °C resulted in no increase in efficacy in terms of recovery of indigenous vegetative bacteria. The results of this study suggest that aqueous heat treatment is not a suitable method for reducing populations of the resting structures of spore-forming bacteria from the surface of netted muskmelons.

Full access