Search Results
The use of dicamba and 2,4-D products on herbicide-tolerant crops has resulted in numerous cases of off-target movement and injury to sensitive plants, including tomato (Solanum lycopersicon L.). Two greenhouse studies were conducted to determine whether ‘Big Beef’ (‘BB’) or ‘Florida 91’ (‘FL’) tomato plants pretreated with an antitranspirant, including Moisture-Loc (ML) at 100 mL·L−1, TransFilm (TF) at 50 g·L−1, or Wilt-Pruf (WP) at 100 mL·L−1, mitigated injury from synthetic auxin herbicides. Dicamba or 2,4-D was applied at a rate corresponding to 1/200 of the manufacturer’s labeled rate of 0.56 kg ae/ha or 1.06 kg ae/ha, respectively. At 2 weeks after treatment (WAT), plants treated with ML or WP before either herbicide exhibited injury symptoms, but they were always less severe than those treated with the herbicide alone for both cultivars. However, shoot length measurements indicated that none of the antitranspirants consistently provided protection against herbicide injury at 2 WAT. By 12 WAT, ML or WP used before either herbicide increased the number of live reproductive organs compared with dicamba or 2,4-D alone for both cultivars. Floral abortion on tomato plants was also reduced when ML or WP was applied before an herbicide treatment by 12 WAT. Although WP and ML did not provide complete protection against synthetic auxin herbicide injury, the concept of using film-forming barriers may be useful in mitigating some of the short-term effects of drift on plants.
The increasing adoption of dicamba-tolerant soybean (Glycine max) increases the potential exposure of wine grape (Vitis sp.) to dicamba, to which off-target injury may occur via particle drift or vapor drift. In Missouri, at one site in 2017 and at two sites in 2018, research of production vineyards focused on the effects of dicamba on hybrid ‘Vidal blanc’ grapevines. During flowering and early fruit set, bearing grapevines were exposed to low rates of dicamba delivered as a spray solution of 81 or 161 ppm or by vapor from treated soil. Grapevines were highly sensitive to dicamba, and visible symptoms extended throughout the growing season. The severity of dicamba injury (leaf cupping and feathering) was similar at two of three site-years, with greater injury related to particle drift than to vapor drift of dicamba. Early-season injury resulted in dicamba impacting the total soluble solids (TSS) content of grape berries and grape yield. At harvest during two site-years, yield reductions of up to 45% were associated with dicamba exposure at flowering. Across all site-years, no significant effects of dicamba drift were observed in the TSS content of berries during veraison in August, as measured by refractometer. However, the final TSS content of berries at harvest in September was reduced by 12% from dicamba as particle drift. At a minimum detection level of 10 ng⋅mL−1, high-performance liquid chromatography mass spectrometry identified dicamba at levels up to 33 ng⋅mL−1 in grape must over all site-years. Unexpectedly, this was up to 125 d after grapevine exposure despite low levels of visible dicamba symptomology.