Search Results

You are looking at 1 - 10 of 64 items for

  • Author or Editor: Randolph Beaudry x
Clear All Modify Search

Blueberry fruit were sealed in 0.00254 cm (1 mil) thick, 200 cm2 low density polyethylene pouches, which, in turn, were sealed in containers continually purged with gas mixtures containing 0, 20, 40 or 60 kPa CO2 and held at 15C. Sampling the gas composition of the enclosed package permitted accurate determination of O2 uptake, CO2 production and the respiratory quotient (RQ) despite the high background CO2 levels. O2 uptake was minimally affected by the CO2 treatments. CO2 production, however, increased at CO2 partial pressures over 20 kPa, resulting in an elevated RQ at 40 and 60 kPa CO2. Raising the CO2 partial pressure caused the fruit to become more sensitive to lowered O2, raising the O2 partial pressure associated with the RQ breakpoint.

Free access

The application of low oxygen through modified atmosphere packaging (MAP) is a technique used successfully to preserve the visual quality of lettuce and some other commodities. The expansion of use of low O2 via MAP to preserve quality of most commodities is limited by technical difficulties achieving target O2 concentrations, adverse physiological responses to low O2, and lack of beneficial responses to low O2. Low O2 often is not used simply because the physiological responses governed by the gas are not limiting quality maintenance. For instance, shelf life may be governed by decay susceptibility, which is largely unaffected by low O2 and may actually be exacerbated by the conditions encountered in hermetically sealed packages. Physiological processes influenced by low O2 and limit storability are discussed. The interdependence of O2 concentration, O2 uptake by the product, and temperature are discussed relative to requirements for packaging films.

Free access

A theoretical model was developed that predicts how volatiles synthesized by fruit accumulate in the fruit interior and the fruit cuticle. Model inputs include temperature, rates of volatile synthesis, solubility of the volatile in the cuticular material, and the permeability of the volatile through the cuticle. The model indicated that the accumulation of volatiles was highly temperature-dependent and dependent upon the nature of the interaction between the volatile and the cuticle. For volatiles whose cuticular permeability declined rapidly with temperature, the concentration in the fruit and fruit cuticle tended to increase with decreasing temperature. This accumulation of volatiles in the fruit and fruit cuticle with decreasing temperature was enhanced by a decrease in the heat of solution (i.e., temperature sensitivity of solubility) and diminished by an increase in the Q10 Of the rate of volatile synthesis (i.e., the temperature sensitivity of the rate of synthesis). The model suggests that storage temperature can influence volatile retention and, hence, the volatile profile.

Free access

The steady-state oxygen concentration at which blueberry fruit began to exhibit anaerobic carbon dioxide production. (i.e., the RQ breakpoint) was determined for fruit held at 0, 5, 10, 15, 20 and 25 C using a modified atmosphere packaging (MAP) system. As fruit temperature decreased, the RQ breakpoint occurred at lower oxygen concentrations. The decrease in the RQ breakpoint oxygen is thought to be due to a decreasing oxygen demand of the cooler fruit.

The decrease in oxygen demand and concomitant decrease in oxygen flux would have resulted in a decrease in the difference in the oxygen concentrate on between the inside and outside of the fruit and thus decreased the minimum amount of oxygen tolerated. The implications on MAP strategies will be discussed.

Free access

We tested the sorptive capacity of a number of nontarget materials found in apple storage rooms on their capacity to remove 1-MCP from the storage atmosphere and thereby compete with the fruit for the active compound. Furthermore, we evaluated the impact of temperature and moisture. Nontarget materials included bin construction materials [high density polyethylene (HDPE), polypropylene (PP), weathered oak, nonweathered oak, plywood, and cardboard] and wall construction materials (polyurethane foam and cellulose-based fire retardant). Each piece had an external surface area of 76.9 cm2. We placed our “nontarget” materials in 1-L mason jars and added 1-MCP gas to the headspace at an initial concentration of ≈30 μL·L-1. Gas concentrations were measured after 2, 4, 6, 8, 10, and 24 hours. The concentration of 1-MCP in empty jars was stable for the 24-hour holding period. Little to no sorption was detected in jars containing dry samples of HDPE, PP, cardboard, polyurethane foam, or fire retardant. Inclusion of plywood, nonweathered oak, and weathered oak lead to a loss of 10%, 55%, and 75% of the 1-MCP after 24 hours, respectively. Using dampened materials, no sorption resulted from the inclusion of HDPE, PP, polyurethane foam, or the fire retardant. However, the rate of sorption of 1-MCP by dampened cardboard, plywood, weathered oak, and nonweathered oak increased markedly, resulting in a depletion of ≈98%, 70%, 98%, and 98%, respectively. The data suggest that there are situations where 1-MCP levels can be compromised by wooden and cardboard bin and bin liner materials, but not by plastic bin materials or typical wall construction materials.

Free access

Hexanal vapor is a natural, metabolizable fungicide that inhibits fungal activity and enhances the aroma biosynthesis in sliced apple fruit. Whole apple fruit were inoculated at two points per fruit with Penicillium expansum at a concentration of 0.5 × 105 spore/ml and treated with hexanal vapors. Inoculated fruit were exposed to hexanal for 48 hr and kept for another 72 hr in hexanal-free air at 22°C. Treatments included 8.2–12.3 μmol·L–1 (200–300 ppm), 14.5-18.6 μmol·L–1 (350–450 ppm), and 24.8-28.9 μmol·L–1 (600–700 ppm), each with an air control. At a concentration of 200–300 ppm hexanal, there was no fungal growth during treatment, but lesion development was evident on 100% of the treated fruit following cessation of treatment. After 72 hr holding in air, lesion diameter was significantly smaller for treated fruit. When inoculated apple fruit were exposed to 350–450 ppm and 600–700 ppm hexanal vapors, the decay rate was 44.7% and 23.9%, respectively, while the decay rate of inoculated control apple fruit was 100% and 98%, respectively, after 72 hr holding in air. The development of aroma volatiles was investigated for both treated and untreated whole apple fruit. Hexanal was actively converted to aroma volatiles by `Golden Delicious' fruit and there was no detectable hexanal emanations. The amount of hexylacetate, hexylbutanoate, hexylhexanoate, hexylpropionate, butylhexanoate, and hexyl-2-methybutanoate were about 2- to 4-fold higher in treated apple fruit than in untreated apple fruit. `Mutsu' apple fruit were treated with 350–450 ppm hexanal for 48 hr and processed into apple sauce within 4 hr. An informal sensory evaluation for processed `Mutsu' apple revealed no apparent flavor difference between treated and control fruit sauce.

Free access

Volatile production is known to change with stages of plant organ development. Research has primarily focused on ripening-related volatiles; however, the potential exists to use volatiles as markers of organ damage and senescence. We have employed gas chromatography/mass spectrometry to establish stages of senescence based on volatile profiles of whole and lightly processed broccoli and carrot. An air-tight chopping apparatus was used as a flow-through chamber system and the exit gas stream analyzed for each commodity with and without tissue disruption. For carrot, isoprenoid pathway volatiles, such as 3-carene, caryophellene, α-caryophellene, and β-pinene, increase with damage and tissue senescence. Similar trends were obtained for broccoli with volatiles characteristic of β-oxidation and shikimic acid pathways. Time and condition-related volatile profile changes will be presented for carrot, broccoli, and strawberry.

Free access

Hypobaric or low-pressure storage (LPS) is a technology that has been reported to have significant potential to preserve fresh produce quality. However, excessive moisture loss has often been erroneously reported to limit the utility of LPS. We report on hypobaric (1.6 to 2.0 kPa) storage of representative bulky and leafy fruits and vegetables {strawberry (Fragaria ×ananassa Duchesne ex Rozier) fruit, carrot [Daucus carota subsp. sativus (Hoffm.) Arcang.] roots, spinach (Spinacia oleracea L.) leaves, and rose (Rosa ×hybrida ‘Attaché Pink’) flowers} using a laboratory-scale LPS and provide data on the regulation of humidity and temperature and describe effects on moisture loss and quality. The LPS achieved near saturation (>99.5%) of water without condensation on the chamber sidewalls. This required tight regulation of the chamber wall temperature (2.2 °C ± 0.15 °C) and careful control of the flux of air into the chamber. The rate of moisture loss was unaffected by the pressure of the storage atmosphere; however, it was affected by commodity, being lower for strawberry than for carrot or spinach, and averaging 0.08%, 0.40%, and 0.35% per day, respectively (average of normal and low pressure combined). Moisture loss of long-stemmed rose in LPS averaged 0.071% per day over an 8-week storage period. Although moisture loss was low, the LPS environment appeared to enhance water loss from deeper within plant tissues than storage at atmospheric pressure and, in roses, resulted in bent neck 2 or 3 days after removal from storage after 3 weeks. For this reason, LPS did not benefit storability of cut ‘Attaché Pink’ roses compared with high-humidity chambers maintained at atmospheric pressure.

Open Access

Low O2 and high CO2 concentrations can be used effectively to slow respiration and retard decay, but anaerobic and C02-injurious conditions must be avoided. The objective of this research was to: 1) determine the effects of low O2 and very high-C02 on flavor quality and accumulation of fermentation products. Strawberries and blueberries were stored in 2% O2/0% CO2, 20% 02/50% CO2, 2% O2/50% CO2, and 20% 02/0% CO2 for 0, 2, 4, 6, and 8 days at 20C. A taste panel evaluated the berries at the end of each storage period and again after 2 days under ambient conditions. Ethanol was the primary fermentation product that accumulated in response to low O2 and high CO2 concentrations. However, acetaldehyde was produced preferentially in response to elevated C02 levels. The flavor quality of the strawberries and blueberries was only acceptable for 2 days for treatments containing 50% CO2. The most intense off-flavors were detected in the 2% 02/50% CO2 and 20% O2/50% CO2 samples. 50% CO2 was highly effective in preventing decay, but this concentration was too high for acceptable flavor quality for storage periods greater than 2 days.

Free access