Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Rachel B. Elkins x
  • HortScience x
Clear All Modify Search

Assessing consumer acceptance is an important aspect of cultivar evaluation. Since 2002, about 2700 consumers have participated in pear preference surveys. Surveys were conducted on multiple dates and at multiple venues from 2002 to 2005 in Oregon and northern California. Survey participants were asked to indicate their preference for pears based on size, appearance, taste, and overall preference. They were also asked to indicate what attributes they liked or disliked about their favorite and least favorite varieties and to indicate their level of purchase intent. Each survey consisted of four to six cultivars, including at least one standard commercial comparison; i.e., Bartlett, Bosc, or Anjou. Data was analyzed (RCBD; Friedman Analysis of Rank or ANOVA/Tukey's HSD) at the OSU Food Innovation Center Experiment Station using Compusense® five v.4.6 software (Guelph, Ont., Canada). Results indicated several alternative possibilities for both summer and winter sales. Among the most preferred cultivars (variable between states) were Anjou (commercial standard winter pear), Bartlett (commercial standard summer pear and most-consumed cultivar), Blake's Pride, Cinnamon, Concorde, and 71655-014. Other major findings were preference for large pears for adults and small for children, overall liking based on sweetness and flavor rather than skin color, and general lack of knowledge of many commercial pear cultivars. Sensory evaluation surveys will be continued in 2006 in California, with focus on differential harvest times for selected preferred cultivars. Consumer preference data is being combined with production and postharvest quality data in order to provide the pear industry a comprehensive data set on potential alternative cultivars.

Free access

Preharvest applications of 1-methylcyclopropene (1-MCP) were tested on California ‘Bartlett’ pears at 80 N maturity and at rates of 0, 28, and 56 mg·L−1 in 2006 and 0, 50, and 100 mg·L−1 in 2007. In 2007, a parallel experiment was conducted to compare 50 mg·L−1 1-MCP with 96 g a.i./ha 1-naphthaleneacetic acid (NAA) used commercially to control or decrease premature fruit drop. Premature fruit drop, maturity, firmness at harvest, color, softening, and ethylene production during ripening and physiological disorders were studied in fruit harvested between 7 and 21 days after 1-MCP application and either ripened at 20 °C immediately after harvest or after 3.5 to 6 months storage at –1 °C. Overall, 50 mg·L−1 1-MCP reduced the incidence of premature fruit drop when compared with the untreated fruit and fruit drop was similar to adjuvant-treated fruit and NAA-treated fruit, especially 28 days or longer after the treatment. 1-MCP was more effective in retarding color, softening, and ethylene production during ripening than delaying fruit maturation on the tree (loss of firmness), and both rates of 1-MCP tested each season yielded similar fruit responses on most evaluation times. 1-MCP's effect on ripening was lost if fruit remained on the tree 21 days or after the fruit were stored for 3.5 months in cold storage regardless of treatment concentration. A reduction of internal breakdown incidence was observed in 1-MCP-treated fruit.

Free access