Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: R.M. Manshardt x
  • All content x
Clear All Modify Search
Free access

C.R. Clement and R.M. Manshardt

The pejibaye (Bactris gasipaes Kunth) is being evaluated in Hawai'i for its fresh heart of palm, a gourmet vegetable. Seven half-sib progenies of the Putumayo land race were planted in a split-plot design, with densities (3333, 5000, 6666 plants/ha) as the main plots, progenies as the sub-plots, three replications, and nine plants/plot. Precocity was defined as “days from planting to harvest”; relative growth rate (RGR) and unit leaf rate (Ea) are possible causes of precocity and were estimated for the period from 6 months after planting to harvest. Density effects were never significant, suggesting that competition is not significant before harvest. Mean precocity ranged from 610 to 712 days; Va accounted for 14% of the phenotypic variance (Vp), with h2 = 0.57, similar to fruiting precocity in African oil palm (Elaeis guineensis Jacq.). Mean Ea ranged from 1.89 to 2.21 g/m2 per day, Va accounted for 8% of Vp, with h2 = 0.33 Mean RGR ranged from 0.0086 to 0.0102 d–1; Va accounted for 9% of Vp, with h2 = 0 35 Neither RGR (r = 0.20) nor Ea (r = 0.19) are significantly correlated with precocity. Heart, edible stem, and total edible product weights did not present significant progeny effects, probably because of the criterion used to determine harvest (height = 1.3 m). Precocity is easiest to work with and should give acceptable genetic gains.

Free access

Charles R. Clement and Richard M. Manshardt

The pejibaye (Bactris gasipaes, Palmae) is being evaluated in Hawaii as a source of fresh hearts of palm. Nine open-pollinated progenies from the Benjamin Constant population of the Putumayo landrace are planted at three sites in a RCB. The best site started yielding at 15 months after planting, the intermediate at 16 months, the poorest at 18 months. During the first four months of harvest at the best site, 25% of the plants were cut; during three months at the intermediate site, 15% were cut; during the first cut at the poor site, 1% were cut. Progeny harvest percentages ranged from 7 to 53% at the best site, with only three progenies above average (33, 47, 53%). These are considered to be precocious. These three progenies produced average size hearts (172±36, 204±57, 203±44 g/plant, respectively; experimental mean±SD = 205±53 g), but yielded above average at 5000 plants/ha (275, 480, 524 kg/ha, respectively; exp. mean = 272 kg; corrected for % cut). Potential yields of these progenies were near the mean (871±198, 1018±280, 983±197 kg/ha, respectively; exp. mean = 986±381 kg/ha), but their precocity provides early returns to the farmer.

Free access

Charles R Clement and Richard M. Manshardt

The pejibaye (Bactris gasipaes, Palmae) is being evaluated in Hawaii as a source of fresh hearts of palm. Nine open-pollinated progenies from the Benjamin Constant population of the Putumayo landrace are planted at three densities: 1.5 × 2 m (3333 plants/hectare); 1 × 2 m (5000 pl/ha, the commercial density in Costa Rica); 1 × 1.5 m (6666 pl/ha). Harvest started at 15 months after planting and four months later 25% of the plants had been harvested, with 25%, 30% and 21% at 3333, 5000, and 6666 pl/ha, respectively. Mean heart diameters were unaffected by density (mean±SD = 3.2±0.4 cm). Heart lengths were similar (24±5 cm, 23±6 cm, 26±5 cm, respectively), as were heart weights (200±41 g, 187±44 g, 224±42 g, respectively). This relative uniformity was unexpected, as density effected all of these yield components in earlier experiments in Latin America. Potential yields were different (667±136 kg/ha, 835±221 kg/ha, 1491±275 kg/ha, respectively), and are comparable to yields reported from Costa Rica. Actual precocious yields, however, were not different (167 kg/ha, 278 kg/ha, 385 kg/ha, respectively).

Free access

Morshidi Maimunah, R.M. Manshardt, and Francis Zee

Populations of wild Carica papaya, previously designated as Carica peltata, were sampled from its native range on the Caribbean coast of Central America (Mexico, Belize, Guatemala, Honduras) and cultivated Carica papaya from both Central and South America were examined for isozyme variability. Thirteen loci from nine enzyme systems (Pgm, Pgi, Idh, Mdh, 6Pgd, Ugpp, Skdh, Aco, Tpi) were scored for all populations. Ten loci were polymorphic and a total of 31 alleles were detected. Isozyme genotypes as determined through segregation analysis were used in the genetic interpretation for eight loci and 18 alleles while six additional loci and 13 alleles were postulated on the basis of phenotypic variation found throughout the species. Nei's genetic identity, I, for both cultivated and wild Carica papaya was >0.9, which is consistent with conspecific populations. Wild papaya populations from different geographic areas appear more related to one another than to domesticates in the same geographic region.

Free access

K.M. Aradhva, F. Zee, and R.M. Manshardt

Fifty-six accessions involving five taxa of Nephelium (N. Iappaceum varieties lappaceum and pallens, N. hypoleucum, N. ramboutan-ake, and N. cuspidatum) were fingerprinted and evaluated for genetic diversity using isozyme polymorphism. All five taxa were polymorphic for most of the enzymes encoded by 10 putative loci. Number of alleles per locus ranged from three for Pgi-1 to nine for Pgi-2 with a total of 57 alleles. Thirty-eight accessions out of 56 possessed unique isozyme genotypes, indicating a high level of diversity in the collection. On average, 80% of the loci were polymorphic and the expected and observed heterozygosities were 0.374 and 0.373, respectively. The cluster analysis of the isozyme data revealed five distinct clusters representing the five taxa included in the study. Genetic differentiation within N. Iappaceum var. Iappaceum was evident from the cluster analysis. Isozyme data indicated that N. ramboutan-ake is the closest relative of N. Iappaceum var. Iappaceum, followed by N. hypoleucum, N. Iappaceum var. pallens, and N. cuspidatum. Interestingly, the varieties of N. Iappaceum exhibited genetic divergence far beyond that of the congenerics, N. hypoleucum and N. ramboutan-ake and may require a taxonomic revision.

Free access

F. Zee, K.M. Aradhya, and R.M. Manshardt

A genetic diversity analysis involving 49 Iychee (Litchi chinensis Sonn.) accessions using eight enzyme systems encoding 12 loci (Idh-1, Idh-2, Mdh-2, Per-1, Pgi-2, Pgm-1, Pgm-2, Skdh, Tpi-1, Tpi-2, Ugpp-1, and Ugpp-2) revealed moderate to high levels of genetic variability. Cluster analysis of the isozyme data from 40 genetically different accessions of the total 49 identified three groups at the 50% level of genetic similarity, the largest of which contained 32 of the 40 accessions distributed in three sub-groups. The groups including the three subgroups differed in frequency and composition of alleles at different loci. Polymorphism was observed in 77% of the loci, with an overall mean of 2.2 alleles per locus and an observed heterozygosity of 0.387. The unbiased genetic identities (I) between groups ranged from 0.809 to 0.937. Summing over all 11 polymorphic loci, 16% of gene diversity was due to differentiation between groups and 84% within groups. Comparison of isozyme fingerprints revealed that some accessions with identical names, particularly of `No mai tsz', `Kwai mi', and `Hak ip', possessed different isozyme genotypes, while other accessions with different names displayed identical isozyme genotypes. Isozyme fingerprinting will be useful in revealing and resolving questions of clonal identity, which are common in Iychee germplasm collections.

Free access

R. Manshardt, S. Lius, D. Gonsalves, M. Fitch, J. Slightom, and J. Sanford

Transgenic papaya lines carrying the coat protein gene (CP) of papaya ringspot virus (PRV) strain HA 5-1 display PRV reactions ranging from complete susceptibility (39-3 & 39-4), to slight delay in onset of symptoms (39-1) and attenuation of symptoms (60-3), to high-level resistance (55-1, 63-1). Normal Mendelian segregation of transgene expression was lost in R1 of 39-3 and 39-4, and inbred R1 60-3 gave an aberrant 1:1 ratio. R0 55-1 plants were resistant in the field (Hawaii) for 2 years following manual and/or aphid inoculation, and the high-level resistance remained stable in the R1 after repeated manual inoculations in the greenhouse and graft inoculation for up to 1 year (Cornell). However, inoculation with PRV HA-Oahu strain produced symptoms in some plants at Cornell (9% after 6 weeks) and in Hawaii (50% after 1 year). Two 55-1 and one 60-3 plant subsequently underwent remission of symptoms and became ELISA-negative (Hawaii). Transmission of PRV isolates from symptomatic 55-1 plants to other CP+ 55-1 bioassay plants was unsuccessful.

Free access

S. Lius, R. Manshardt, D. Gonsalves, M. Fitch, J. Slightom, and J. Sanford

Twenty transgenic Carica papaya plants ('Sunset', Roclone 55-l) carrying the coat protein gene (cp) of papaya ringspot virus (PRV) strain HA 5-l have remained symptomless and ELISA-negative for 18 mo. after inoculation with Hawaiian PRV under field conditions. Control plants showed disease symptoms within 1 mo. after manual inoculation or within 4 mo. when aphid populations were the inoculum vectors. Trunk diameter was significantly greater in cp + plants (14.3 cm) than in PRV-infected controls (9.3 cm). Fruit brix, plant morphology, and fertility of cp + plants were all norm al. Segregation analysis in R1 seedlings indicated that 55-1 contains a single transgenic insertion site. PRV resistance in R1 plants was linked with the cp gene, although in some progenies, up to 50% of cp + plants developed mild PRV symptoms more than 3 mo. after inoculation. Preliminary tests suggest that this is not due to genesis of virulent mutant strains of PRV.

Free access

Catherine G. Cavaletto, Natalie Y. Nagai, Charles R. Clement, and Richard M. Manshardt

Fresh pejibaye palm heart samples were evaluated from 1) progenies from the Benjamin Constant population of the Putumayo landrace and 2) progenies from the Yurimaguas population of the Pampa Hermosa landrace. Favorable sensory characteristics included sweetness, tenderness, crispness, and moistness. Negative sensory characteristics found in some samples were astringency and acridity. Sensory scores for astringency and acridity were significantly different (p=.05) between sections of the heart Basal sections appear to be more acrid and astringent than the apical sections. Differences in acridity also exist between plants within a progeny (p=.05). Percent total soluble solids ranged from 3.0 to 6.6, but no obvious pattern was apparent. Samples were also provided to chefs in upscale restaurants where they received favorable comments.

Free access

Charles R. Clement, Richard M. Manshardt, Joseph DeFrank, Catherine G. Cavaletto, and Natalie Y. Nagai