Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: R.K. Prange x
Clear All Modify Search
Free access

Robert K. Prange and Jennifer R. DeEll

Berry crops can include a wide variety of plant species, with the most important temperate North American species in the genera Fragaria, Rubus, and Vaccinium. The preharvest factors affecting the postharvest quality of berry crops can be divided into abiotic and biotic factors. Amongst the abiotic factors, mineral nutrition, especially calcium and nitrogen, water, temperature, and light play important roles in postharvest quality attributes such as size, color, firmness, acidity, and sweetness. Amongst the biotic factors, several postharvest pathogens, which are also present as preharvest pathogens, can cause very significant reductions in postharvest quality. Grey mold (Botrytis cinera) is considered to be the most important pre- and postharvest pathogen in berry crops, but other preharvest pathogens (e.g., Alternaria, Colletotrichum, and Rhizopus) can become major problems, depending on other preharvest factors. In some growing areas, the presence of fruit fly larvae in the fresh fruit reduces the postharvest quality. Other biotic factors can be more subtle in their effects on postharvest quality, such as cultivar, pruning, and pollination.

Free access

Jennifer R. DeEll and Robert K. Prange

Postharvest quality and sensory attributes of organically and conventionally grown `McIntosh' and `Cortland' apples (Malus domestica Borkh.) stored at 3C in ambient air or in controlled atmospheres were evaluated. Organically grown apples had higher soluble solids concentration than conventionally grown apples, while there were no significant differences in firmness or titratable acids content. Organically grown `McIntosh' were perceived by sensory panelists as firmer than conventionally grown `McIntosh' at harvest but not after storage, which may have been due to maturity differences. No significant differences were perceived in juiciness, sweetness, tartness, and off-flavor of apples at harvest or after storage.

Full access

Jennifer R. DeEll and Robert K. Prange

This paper reports preliminary results on the postharvest quality and storage characteristics of several scab-resistant apple cultivars. `Novaspy', `Moira', `Priscilla', `Novamac', `Nova Easygro', `Prima', and `Macfree' were stored for 3 months at 3C in air or standard controlled atmosphere (CA; 4.5% CO2 and 2.5% O2) in 1990 and for 4 months at 0C in air, standard CA, or low-O, CA (LO; 1.5% CO2 and 1.5% O2) in 1991. `Moira', `Prima', and `Priscilla' had very limited storage life. `Moira' was susceptible to bitterpit, scald, core browning, vascular breakdown, and storage rots. `Prima' was susceptible to core browning and vascular breakdown and had a high incidence of storage rots in air storage. `Priscilla' had several defects as a result of insect damage and was susceptible to bitterpit and scald. `Novaspy' stored very well and had virtually no physiological disorders or storage rots. `Novamac, `Nova Easygro', and `Macfree' developed few storage rots and were essentially at the end of their storage life after 4 months, regardless of storage conditions. Firmness in `Novamac' decreased substantially in all storage atmospheres, while `Nova Easygro' and `Macfree' were susceptible to core browning and scald.

Free access

Robert K. Prange and Jennifer R. DeEll

Free access

Jennifer R. DeEll, Robert K. Prange and Dennis P. Murr

Chlorophyll fluorescence was evaluated as a rapid and nondestructive technique to detect low-O2 or high-CO2 stress in apples (Malus domestica Borkh.) during storage. `Marshall' McIntosh apples were held for 5, 10, 15, 20, or 25 days at 3C in 1) standard O2 (2.5% to 3%) and low CO2 (<1%), 2) low O2 (1% to 1.5%) and low CO2 (<1%), 3) standard O2 (2.5% to 3%) and standard CO2 (4% to 4.5%), or 4) standard O2 (2.5% to 3%) and high CO2 (11% to 12%). Only 10% of the apples had skin discoloration after 5 days in 1% to 1.5% O2; 80% developed skin discoloration after 20 days in low O2. Small desiccated cavities in the cortex, associated with CO2 injury, developed in 10% of the apples after 20 days in 11% to 12% CO2. Five days in 1% to 1.5% O2 or 11% to 12% CO2 caused variable fluorescence (Fv) of apple fruit to decrease compared to those held in standard atmospheres. Additional exposure did not significantly affect Fv in either the low-O2 (1% to 1.5%) or high-CO2 (11% to 12%) treatment. Our results suggest that chlorophyll fluorescence techniques can detect low-O2 and high-CO2 stress in apples before the development of associated disorders.

Free access

Barbara J. Daniels-Lake, Robert K. Prange and John R. Walsh

In three consecutive years of storage trials, the effects of reduced O2 levels, elevated CO2 levels, and ethylene on the fry color and sugar content [sucrose and reducing sugars (glucose and fructose)] of `Russet Burbank' potato (Solanumtuberosum L.) tubers were evaluated. The potatoes were stored in modified atmosphere chambers and the atmosphere mixtures were supplied from compressed gas cylinders. Fry color and sugar content were assessed at the start of each trial and after several weeks of exposure to the treatment atmospheres. Four 4-week trials were conducted in 2002 and two 9-week trials were conducted in each of 2003 and 2004. No differences in fry color or sugar content attributable to either increased CO2 or decreased O2 were observed, compared with untreated controls, in any year. In the second and third years, only selected treatments were repeated, with or without 0.5 μL·L-1 ethylene. Ethylene alone caused a moderate darkening of fry color and an increase in reducing sugars. However, the fry color and reducing sugar content of tubers exposed to a combination of elevated CO2 and ethylene were considerably darker and higher, respectively, than observed with ethylene alone. No similar interaction between ethylene and O2 level was observed. These results suggest that CO2 promoted ethylene-induced fry color darkening, which may explain the contradictory effects of CO2 on fry color frequently observed by the potato industry. This is contrary to published research on other fruits and vegetables, which has generally shown that CO2 inhibits ethylene action.

Free access

Jennifer R. DeEll, Robert K. Prange and Dennis P. Murr

Chlorophyll fluorescence, measured using a Plant Productivity Fluorometer Model SF-20 (Richard Brancker Research, Ottawa, Ont.), was evaluated as a rapid and nondestructive technique to detect low O2 and/or high CO2 stress in apples during storage. `Marshall' McIntosh apples were held for 5, 10, 15, 20, or 25 days at 3C in the following four treatments: standard O2 (2.5% to 3%) and low CO2 (<1%); low O2 (1% to 1.5%) and low CO2 (<1%); standard O2 (2.5% to 3%) and standard CO2 (4% to 4.5%); or standard O2 (2.5% to 3%) and high CO2 (11% to 12%). Only 10% of the apples had skin discoloration after 5 days in 1% to 1.5% O2, while 80% developed skin discoloration after 20 days in low O2. Small desiccated cavities in the cortex, associated with CO2 injury, developed in 10% of the apples after 20 days in 11% to 12% CO2. Both 1% to 1.5% O2 and 11% to 12% CO2 for 5 days caused chlorophyll fluorescence [Fv = (P – T)/P] of apple fruit to decrease, as compared to those held in standard atmospheres. Additional exposure time did not significantly affect Fv in either the low-O2 (1% to 1.5%) or high-CO2 (11% to 12%) treatment. The results of this study suggest that chlorophyll fluorescence can detect low-O2 and high-CO2 stress in apples, prior to the development of associated physiological disorders.

Free access

Robert K. Prange, Peter A. Harrison and Jennifer R. DeEll

In a 2-year study, `McIntosh' apples were stored in a CA regime of 4.5% CO2 + 2.5% O2. Within the CA cabinets there were three humidity levels: >75% RH (CaCl2 salt in the chamber), >90% RH (ambient), or >95% RH (distilled water in the chamber). After removal at 4 and 8 months, the fruit were warmed to handling temperatures of 0C, 10C, or 20C and subjected to three levels of impact bruising of 0, 10, or 20 lb with a Ballauf pressure tester with a 1.5 × 1.5-cm tip. The results showed that low-humidity CA storage decreased visible bruising. Although visible shrivel was not observed, the low-humidity treatment may increase the possibility of its occurrence. Respiration, measured as O2 consumption or CO2 production immediately after removal from CA storage, was lowest in low humidity (>75% RH) and highest in ambient humidity (>90% RH) CA storage. The humidity treatments did not affect firmness, soluble solids, titratable acids, or ethylene production. Increasing the temperature during post-storage handling decreased the amount of visible bruising without affecting other variates such as firmness, soluble solids, titratable acids, respiration, or ethylene production.

Free access

K.A. Sanford, P.D. Lidster, K.B. McRae, E.D. Jackson, R.A. Lawrence, R. Stark and R.K. Prange

Postharvest response of wild lowbush blueberry (Vaccinium angustifolium Ait. and V. myrtilloides Michx.) to mechanical damage and storage temperature was studied during 2 years. Fruit weight loss and the incidence of shriveled or split berries were major components that contributed to the loss of marketable yield resulting from mechanical damage and storage temperature. Decay of berries resulted in only 1% to 2% of the total marketable fruit loss. In general, the major quality attributes (firmness, microbial growth, hue, bloom, split, and unblemished berries) deteriorated with increasing damage levels and increasing storage temperature without significant interaction. Temperature had consistent effects in both years on moisture content, soluble solids concentration, titratable acids, weight loss, shriveled and decayed berries, Hunter L values, and anthocyanin leakage, while damage level had inconsistent or no significant effect.

Free access

John M. DeLong, Robert K. Prange, Peter A. Harrison, R. Andrew Schofield and Jennifer R. DeEll

A final harvest window (FHW), expressed as Streif Index coefficients [firmness/(percentage soluble solids concentration × starch index)], was developed for identifying maximum fruit quality for strains of `McIntosh', `Cortland', and `Jonagold' apples (Malus ×domestica Borkh.) following 8 months of controlled-atmosphere (CA) storage. The Streif Index was calculated during nine preharvest (twice per week) intervals and four weekly harvests over three seasons. The relationship between Streif Index (dependent variable) and day of year (independent variable) of the preharvest and harvest samples was then derived by negative first-order linear regression equations that had parameter estimate (b1) probability values ≤0.0001 for all of the strains. Apples from the four harvest periods were stored in standard CA storage for 8 months and then subjected to a 7-day shelf-life test at 0 °C followed by 5 days at 20 °C. Poststorage quality data were categorized and combined to produce an overall fruit quality rating scale. For each strain, the final harvest (i.e., day of year) was identified as that which directly preceded at least a 10% drop in the poststorage fruit quality rating compared with the first harvest rating. The FHW, expressed as Streif Index coefficients via the regression of Streif Index (Y) on day of year (X), was then calculated as the 3-year final harvest mean with the upper and lower window limits being determined by the standard deviation of the mean. The lower to upper FHW boundaries ranged from 4.18 to 5.34, 4.12 to 5.46, 4.51 to 5.68, 5.23 to 5.99, and 1.38 to 2.34 for Redmax, Marshall and Summerland `McIntosh', Redcort `Cortland' and Wilmuta `Jonagold', respectively. The practical utility of the Streif Index method lies in the ease with which apple fruit maturity at harvest can be evaluated for its suitability for long-term CA storage.