Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: R.J. Henry x
  • Refine by Access: All x
Clear All Modify Search
Free access

Fredy R. Romero*, Richard J. Gladon, and Henry G. Taber

Impatiens (Impatiens wallerana Hook. f.) is the most important annual bedding plant in the US, based on wholesale dollar volume. Production of high-quality plants requires optimization of the nutrition regimen during growth, especially the total nitrogen (N) concentration and the ratio of N sources. Our objective was to determine the N concentration and ratio of N sources that optimize bedding-plant impatiens growth and development. We used four N concentrations (3.5, 7, 10.5, and 14 mmol·L-1 of N) in factorial combination with four ratios of nitrate-N (NO3 --N) to ammonium-N (NH4 +-N) (4:0, 3:1, 1:1, and 1:3). Application of treatments began at day 30, and every-other-day applications were conducted until day 60. From day 60 to day 70 only deionized water was applied. N concentration and source displayed interation for most growth parameters. When N was supplied at a concentration ≤7 mmol·L-1, the NO3 --N to NH4 +-N ratio did not affect growth. When N was supplied at a concentration ≥10.5 mmol·L-1, a 1:3 NO3 --N to NH4 +-N ratio yielded the greatest shoot dry weight, shoot fresh weight, plant diameter, and number of flower buds per plant. With a NO3 --N to NH4 +-N ratio of 4:0, these growth parameters decreased. To produce high-quality, bedding-plant impatiens, N should be applied at NO3 --N to NH4 +-N ratios between 1:1 and 1:3 in combination with an N concentration of 10.5 mmol·L<-1 at each fertigation from day 30 to day 60 of the production cycle.

Free access

H.L. Ko, R.J. Henry, P.R. Beal, J.A. Moisander, and K.A. Fisher

An assessment was made to determine the suitability of RAPD analysis for identification of the Australian wildflower Ozothamnus diosmifolius (Vent.) DC [syn. Helichrysum diosmifolium (Vent.) Sweet] cultivars and lines. Of 19 arbitrary primer sequences tested, 16 revealed a high degree of polymorphism between the six most important genotypes with commercial significance, producing a total of 166 markers, of which 70% were polymorphic. Several primers (such as OPD-03 and OPM-07) were able to distinguish all tested genotypes from one another, showing an intracultivar consistency. These results indicate that RAPD analysis is a useful tool for establishing genetic diversity in this species as well as assisting in commercial protection of plant breeders' rights.

Free access

S.M. Hum-Musser, T.E. Morelock, J.B. Murphy, and R.L. Henry

Seed germination of spinach (Spinacia oleracea L.) is partially inhibited by a high germination temperature (35 °C). Tolerance of high germination temperatures varies widely depending on the variety used. We ascertained that seed germination of these spinach varieties was thermoinhibited at 35 °C and secondary dormancy was not induced as seeds germinated when transferred to optimum germination conditions (20 °C). Treatment with 99% oxygen and 10 ppm kinetin significantly increased germination of thermoinhibited varieties at 35 °C. During heat stress, all organisms produce heat shock proteins (HSPs), which may function as molecular chaperons, are possibly required for the development of thermotolerance, and may be crucial for cell survival during heat stress. Western blotting of SDS-PAGE gels using antibodies to various heat shock proteins indicated that spinach varieties with the highest degree of thermotolerance have higher levels of HSP expression than varieties with the lowest degree of thermotolerance during germination. These results suggest that thermotolerance could be further improved, either through a breeding program or possibly by genetic engineering.

Full access

Bruce R. Roberts, Henry F. Decker, Kenneth J. Bagstad, and Kathleen A. Peterson

Two biosolid-containing waste media [sewage sludge compost and incinerated biosolids (flume sand)] were tested individually, together, and in combination with a commercial growing medium for growing wildflower sod in greenhouse trials over a 3-year period. A medium composed of flume sand and Metromix (7:3 weight/weight) in 7.5 {XtimesX} 10.5 {XtimesX} 2-inch deep (19 {XtimesX} 27 {XtimesX} 5-cm) plastic trays seeded at 20 oz/1000ft2 (6.1 g·m-2) with cosmos (Cosmos bipinnatus), cornflower (Centaurea cyannis), plains coreopsis (Coreopsis tinctoria), white yarrow (Achillea millefolium) and purple coneflower (Echinacea purpurea) produced a suitable wildflower sod in 10 to 12 weeks. A single application of slow release fertilizer (Osmocote 14-14-14, 14N-4.2P-11.6K) applied as a top dressing had no significant effect on sod development; however, a 4-mil [0.004-inch (0.10-mm)] polyethylene barrier placed in the base of each container resulted in increased dry weight accumulation and a higher root to shoot ratio relative to sod grown without plastic.

Free access

Adrienne E. Kleintop, James R. Myers, Dimas Echeverria, Henry J. Thompson, and Mark A. Brick

Phytochemicals such as phenolic compounds in snap bean (Phaseolus vulgaris) have potential human health benefits. The objectives of this research were to determine the variation in total phenolic content (TPC) measured as gallic acid equivalents (GAEs)—expressed on a fresh weight (FW) basis throughout this study—among a diverse collection of both indeterminate climbing (pole) and determinate (bush) bean cultivars (n = 149) using the Folin–Ciocalteu assay. We also evaluated associations between TPC and phenotypic traits and estimated genotype by environment (G × E) interactions in a subset of the cultivars. The TPC had greater than a 4-fold difference among cultivars and ranged from 0.29 to 1.31 mg·g−1 GAE (mean = 0.49 mg·g−1 GAE). Cultivars were classified into categories of high (≥1.00 mg·g−1 GAE), intermediate (>0.64 to <1.00 mg·g−1 GAE), and low (<0.55 mg·g−1 GAE) TPC. Eighty-four percent, 10%, and 6% of the cultivars fell into the low, intermediate, and high categories, respectively. The pole type cultivars had higher TPC (mean = 0.86 mg·g−1 GAE) when compared with the bush cultivars (mean = 0.47 mg·g−1 GAE). Correlations were observed between TPC and both flower and pod pigmentation. G × E interactions did not occur among pole type cultivars for TPC during 2 years of production, but a significant G × E interaction was observed among bush cultivars. The results demonstrate a wide diversity in snap bean cultivars for TPC, and the pole beans averaged higher TPC than bush bean cultivars. This information should be useful to identify high TPC snap bean cultivars.

Free access

Clinton J. Steketee, Alfredo D. Martinez-Espinoza, Karen R. Harris-Shultz, Gerald M. Henry, and Paul L. Raymer

Seashore paspalum (Paspalum vaginatum Swartz) is a warm-season turfgrass species primarily used on golf courses and athletic fields, and is often impacted by the disease dollar spot caused by Sclerotinia homoeocarpa F.T. Bennett. Dollar spot is the most common and economically important turfgrass disease in North America, and current management of this disease relies heavily on frequent fungicide applications. An alternate management strategy is host plant resistance, but a better understanding of the interactions between pathogen isolates and the host species is needed to effectively incorporate this resistance into elite seashore paspalum genotypes. The goal of this study was to gather host plant/isolate response data that could be used to develop an effective and efficient screening protocol for resistance to this important disease. Five genotypes of seashore paspalum (‘Aloha’, ‘SeaIsle 2000’, ‘SeaIsle 1’, ‘SeaIsle Supreme’, and 05-1743) varying in dollar spot resistance were inoculated with five isolates of S. homoeocarpa in repeated field studies during 2012 and 2013. Isolates used were from three warm-season and one cool-season turfgrass species. Inoculated plots were evaluated visually and using digital image analysis (DIA) for disease development over time and for number and area of infection centers at two rating dates each year. Statistical differences among the seashore paspalum genotypes and inoculation/isolate treatments were detected for area under the disease progress curve (AUDPC) values, number of infection centers, and infection center area. A significant interaction between seashore paspalum genotype and S. homoeocarpa isolate effects was not observed, indicating that host plant resistance genes are likely not isolate specific. Using this information, breeders should be able to use one highly virulent S. homoeocarpa isolate to screen for host plant resistance in seashore paspalum.

Full access

Gregory R. Armel, Robert J. Richardson, Henry P. Wilson, Brian W. Trader, Cory M. Whaley, and Thomas E. Hines

Field and greenhouse studies were conducted in 2001 and 2002 near Painter, VA, to determine the level of weed control and pepper (Capsicum annuum) tolerance to postemergence applications of the acetolactate synthase (ALS) inhibitors trifloxysulfuron, halosulfuron, sulfosulfuron, cloransulam, and tribenuron. Based on measurements of visual injury, heights, dry weights, and chlorophyll content of pepper, the safest ALS inhibitor to pepper was trifloxysulfuron followed by halosulfuron, cloransulam, sulfosulfuron, and tribenuron. In addition, trifloxysulfuron was the only herbicide that provided greater than 86% control of pigweed species (Amaranthus spp.) and carpetweed (Mollugo verticillata) in both years of the field study. Trifloxysulfuron was also the only herbicide evaluated that did not reduce pepper yield compared with the control in both years of the field study.

Full access

William E. Klingeman, Gregory R. Armel, Henry P. Wilson, Thomas E. Hines, Jose J. Vargas, and Philip C. Flanagan

Mugwort (Artemisia vulgaris) is a perennial invasive weed species that has infiltrated row crops, turfgrass, ornamentals, and various noncrop areas. Currently, multiple mimics of indole-3-acetic acid can provide control of this species; however, these herbicides can damage certain sensitive ornamental plants. When applied at reduced rates, the p-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides mesotrione and topramezone have demonstrated some selectivity among certain ornamental plants. Field and greenhouse studies were initiated to evaluate whether these herbicides could control mugwort when applied alone, or in mixtures with photosystem II (PSII)-inhibiting herbicides that often provide synergistic weed control. In the field, mesotrione controlled mugwort between 30% and 60% by 21 days after treatment when applied at 0.093 to 0.187 lb/acre. When the PSII-inhibiting herbicide atrazine was added, control increased to 78% and 79%. In the greenhouse, similar rates produced greater control in mugwort, and all mesotrione treatments limited mugwort regrowth by at least 95% when compared with untreated control. When HPPD inhibitor rates were reduced further, the addition of the PSII inhibitors atrazine or bentazon was not sufficient at providing acceptable control of mugwort.