Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: R.C. Hochmuth x
  • All content x
Clear All Modify Search
Full access

C. Jasso-Chaverria, G.J. Hochmuth, R.C. Hochmuth, and S.A. Sargent

Two greenhouse cucumber (Cucumis sativus) cultivars with differing fruit types [European (`Bologna') and Beit-alpha (`Sarig')] were grown during two seasons in a perlite medium in black plastic nursery containers in a passively ventilated greenhouse in northern Florida to evaluate fruiting responses to nitrogen (N) fertilization over the range of 75 to 375 mg·L–1. Fruit production, consisting mostly of fancy fruits, increased quadratically with N concentration in the nutrient solution, leveling off above 225 mg·L–1 for both cucumber cultivars. Fruit length and diameter were not affected by N concentration in the nutrient solution. Leaf N concentration, averaged over three sampling dates, increased linearly with N concentration in the nutrient solution from 46 g·kg–1 with 75 mg·L–1 N to 50 g·kg–1 with 375 mg·L–1 N. Fruit firmness decreased with increasing N concentration and there was little difference in firmness between the two cultivars. Firmness was similar across three measurement dates during the spring harvest season, but increased during the season in the fall. Fruit color responses to N concentration were dependent on the specific combination of experiment, sampling date, and cultivar. For most combinations of experiment, sampling date, and cultivar, cucumber epidermal color was greener (higher hue angle) with increased N concentration. The color was darkest (lowest L* value) and most intense (highest chroma value) with intermediate to higher N concentrations.

Free access

G.J. Hochmuth, R.C. Hochmuth, M.E. Donley, and E.A. Hanlon

`Classic' eggplant (Solanum melongena L.) responses to K fertilization were evaluated in Spring and Fall 1991 at Live Oak, Fla., on soils testing low in Mehlich-1 extractable K. Total season yield leveled off at 51.1 t·ha-1 with 94 kg K/ha fertilization in spring and at 53.3 t·ha-1 with 60 kg K/ha in fall. Critical K concentrations (in grams per kilogram) in whole leaves were ≈45 at first flowering, 35 at early fruiting, 30 during harvest, and 28 at the end of seven harvests. Fresh petiole-sap K critical concentrations (in milligrams per liter) were ≈4500 to 5000 before harvest and 4000 to 4500 during harvest. Less than 3500 mg K/liter in fresh sap indicated K deficiency in fruiting plants. The Mehlich-1 soil extractant procedure predicted similar responses at the two sites; however, yield responses showed that the two sites differed in fertilization requirements. Fertilizer recommendations for K at both sites exceeded eggplant K requirements.

Free access

S.J. Locascio, G.J. Hochmuth, S.M. Olson, R.C. Hochmuth, A.A. Csizinszky, and K.D. Shuler

Tomato (Lycopersicon esculentum Mill.) was grown with polyethylene mulch at five locations during a total of nine seasons to evaluate the effects of K source and K rate on fruit yield and leaf K concentration with drip and subsurface irrigation. K sources evaluated were KCl, K2SO4, and KNO3, and K rates varied from 0 to 400 kg·ha-1. Preplant soil K concentrations by Mehlich-1 extraction on the sandy soils and loamy sands used in the study varied from 12 mg·kg-1 (very low) to 60 mg·kg-1 (medium). In seven of the eight studies, K source did not significantly influence fruit yield or leaf K concentration. In the other study with subsurface irrigation at Bradenton in Spring 1992, marketable yields were significantly higher with KNO3 than with KCl as the K source. Tomato fruit yield responded to the application of K in all studies. At Gainesville, Quincy, and Live Oak, with drip irrigation on soils testing low to medium in K, maximum yields were produced with 75 to 150 kg·ha-1 K where the K was broadcast preplant. These rates were 25% to 30% higher than those predicted by soil test. At Bradenton and West Palm Beach on soils testing low to very low in K, where all or part of the K was applied in double bands on the bed shoulder with subsurface irrigation, yield responses were obtained to 225 to 300 kg·ha-1 K. These rates exceeded the maximum recommended K rate of 150 kg·ha-1. Tomato leaf tissue K concentrations increased linearly with increased rates of K application, but were not influenced by K source. These data suggest that the recommendation for K on soils testing low in K be increased from 150 to 210 kg·ha-1 and that this increase should suffice for tomatoes grown with either drip or subsurface irrigation.

Full access

Bee Ling Poh, Aparna Gazula, Eric H. Simonne, Robert C. Hochmuth, and Michael R. Alligood

For shallow-rooted vegetables grown in sandy soils with low water-holding capacity (volumetric water content <10%), irrigation water application rate needs to provide sufficient water to meet plant needs, to avoid water movement below the root zone, and to reduce leaching risk. Because most current drip tapes have flow rates (FRs) greater than soil hydraulic conductivity, reducing irrigation operating pressure (OP) as a means to reduce drip emitter FR may allow management of irrigation water application rate. The objectives of this study were to determine the effect of using a reduced system OP (6 and 12 psi) on the FRs, uniformity, and soil wetted depth and width by using three commercially available drip tapes differing in emitter FR at 12 psi (Tape A = 0.19 gal/h, Tape B = 0.22 gal/h, and Tape C = 0.25 gal/h). Reducing OP reduced FRs (Tape A = 0.13 gal/h, Tape B = 0.17 gal/h, and Tape C = 0.16 gal/h) without affecting uniformity of irrigation at 100 and 300 ft lateral runs. Flow rate was also reduced at 300-ft lateral length compared with 100 ft for all three tapes. Uniformity was reduced [“moderate” to “unacceptable” emitter flow variation (q var) and “moderate” coefficient of variation (cv)] at 300 ft for Tape B and C compared with “good” q var and “moderate” to “excellent” cv at 100 ft. Using soluble dye as a tracer, depth (D) of the waterfront response to irrigated volume (V) was quadratic, D = 4.42 + 0.21V − 0.001V 2 (P < 0.01, R 2 = 0.72), at 6 psi, with a similar response at 12 psi, suggesting that depth of the wetted zone was more affected by total volume applied rather than by OP itself. The depth of the wetted zone went below 12 inches when V was ≈45 gal/100 ft, which represented ≈3 h of irrigation at 6 psi and 1.8 h of irrigation at 12 psi for a typical drip tape with FR of 0.24 gal/h at 12 psi. These results show that, for the same volume of water applied, reduced OP allowed extended irrigation time without increasing the wetted depth. OP also did not affect the width (W) of the wetted front, which was quadratic, W = 6.97 + 0.25V − 0.002V 2 (P < 0.01, R 2 = 0.70), at 6 psi. As the maximum wetted width at reduced OP was 53% of the 28-inch-wide bed, reduced OP should be used for two-row planting or drip-injected fumigation only if two drip tapes were used to ensure good coverage and uniform application. Reducing OP offers growers a simple method to reduce FR and apply water at rates that match more closely the hourly evapotranspiration, minimizing the risk of leaching losses.

Full access

D.D. Treadwell, G.J. Hochmuth, R.C. Hochmuth, E.H. Simonne, S.A. Sargent, L.L. Davis, W.L. Laughlin, and A. Berry

Greenhouse experiments were conducted in 2005 and 2006 near Live Oak, FL, to develop fertilization programs for fresh-cut ‘Nufar’ basil (Ocimum basilicum) and spearmint (Mentha spicata) in troughs with soilless media using inputs compliant with the U.S. Department of Agriculture's National Organic Program (NOP). Four NOP-compliant fertilizer treatments were evaluated in comparison with a conventional control. Treatments and their analyses in nitrogen (N), phosphorus (P), and potassium (K) contents are as follows: conventional hydroponic nutrient solution [HNS (150 ppm N, 50 ppm P, and 200 ppm K)], granular poultry (GP) litter (4N–0.9P–2.5K), granular composite [GC (4N–0.9P–3.3K)], granular meal [GM (8N–2.2P–4.1K)], and GM plus a sidedress application of 5N–0.9P–1.7K fish emulsion (GM + FE). Electrical conductivity (EC) of the media, fresh petiole sap nitrate (NO3-N) and K concentrations, dried whole leaf NO3-N, P, and K concentrations, and yield and postharvest quality of harvested herbs were evaluated in response to the treatments. Basil yield was similar with HNS (340 g/plant) and GP (325 g/plant) in 2005 and greatest with HNS (417 g/plant) in 2006. Spearmint yield was similar with all treatments in 2005. In 2006, spearmint yields were similar with the HNS and GP yields (172 and 189 g/plant, respectively) and greater than the yields with the remaining treatments. In both years and crops, media EC values were generally greater with the GC than with the GP, GM, and GM + FE treatments but not in all cases and ranged from 1.77 to 0.55 dS·m−1 during the experiments. Furthermore, HNS media EC values were consistently equal to or lower than the GP media EC values except with EC measurements on 106 days after transplanting in both crops in 2005. Petiole NO3-N and K results were variable among crops and years, but provided valuable insight into the EC and yield data. We expected EC, petiole NO3-N, and petiole K to be consistently higher with HNS than with organic treatments, but they were not, indicating a reasonable synchrony of nutrient availability and crop demand among the organic treatments. The postharvest quality of both basil and spearmint was excellent with all treatments with few exceptions.

Full access

G. J. Hochmuth, S. J. Locascio, T.E. Crocker, C.D. Stanley, G.A. Clark, and L.R Parsons

The Florida horticulture industry (vegetables, ornamentals, citrus, and deciduous fruit), valued at $4.5 billion, has widely adopted microirrigation techniques to use water and fertilizer more efficiently. A broad array of microirrigation systems is available, and benefits of microirrigation go beyond water conservation. The potential for more-efficient agricultural chemical (pesticides and fertilizer) application is especially important in today's environmentally conscious society. Microirrigation is a tool providing growers with the power to better manage costly inputs, minimize environmental impact, and still produce high-quality products at a profit.

Full access

Bee Ling Poh, Aparna Gazula, Eric H. Simonne, Francesco Di Gioia, Robert C. Hochmuth, and Michael R. Alligood

Increasing the length of irrigation time by reducing the operating pressure (OP) of drip irrigation systems may result in decreased deep percolation and may allow for reduced nitrogen (N) fertilizer application rates, thereby minimizing the environmental impact of tomato (Solanum lycopersicum) production. The objectives of this study were to determine the effects of irrigation OP (6 and 12 psi), N fertilizer rate (100%, 80%, and 60% of the recommended 200 lb/acre N), and irrigation rates [IRRs (100% and 75% of the target 1000–4000 gal/acre per day)] on fresh-market tomato plant nutritional status and yields. Nitrate (NO3 )–N concentration in petiole sap of ‘Florida 47’ tomatoes grown in Spring 2008 and 2009 in a raised-bed plasticulture system was not significantly affected by treatments in both years and were within the sufficiency ranges at first-flower, 2-inch-diameter fruit, and first-harvest growth stages (420–1150, 450–770, and 260–450 mg·L−1, respectively). In 2008, marketable yields were greater at 6 psi than at 12 psi OP [753 vs. 598 25-lb cartons/acre (P < 0.01)] with no significant difference among N rate treatments. But in 2009, marketable yields were greater at 12 psi [1703 vs. 1563 25-lb cartons/acre at 6 psi (P = 0.05)] and 100% N rate [1761 vs. 1586 25-lb cartons/acre at 60% N rate (P = 0.04)]. Irrigation rate did not have any significant effect (P = 0.59) on tomato marketable yields in either year with no interaction between IRR and N rate or OP treatments. Hence, growing tomatoes at 12 psi OP, 100% of recommended N rate, and 75% of recommended IRR provided the highest marketable yields with least inputs in a drip-irrigated plasticulture system. In addition, these results suggest that smaller amounts of irrigation water and fertilizers (75% and 60% of the recommended IRR and N rate, respectively) could be applied when using a reduced irrigation OP of 6 psi for the early part of the tomato crop season. In the later part of the season, as water demand increased, the standard OP of 12 psi could be used. Changing the irrigation OP offers the grower some flexibility to alter the flow rates to suit the water demands of various growth stages of the crop. Furthermore, it allows irrigation to be applied over an extended period of time, which could better meet the crop's needs for water throughout the day. Such an irrigation strategy could improve water and nutrient use efficiencies and reduce the risks of nutrient leaching. The results also suggest that OP (and flow rate) should be included in production recommendations for drip-irrigated tomato.