Search Results

You are looking at 1 - 10 of 14 items for

  • Author or Editor: R.C. Ebel x
Clear All Modify Search

The surfactant “Surfactant WK” (dodecyl ether of polyethylene glycol) was applied to peach trees [Prunus persica (L.) Batsch] at full bloom over 3 years. Blossoms died rapidly so that within 2 days dead blossoms could be distinguished easily from live blossoms or set fruit. There were strong (R 2 > 0.87), linear correlations between concentration of “Surfactant WK” applied and percent blossoms removed and fruit set, which were similar over the 3 years. Trees were hand-thinned according to commercial practices after treatment. There was similar cropload, fruit weight, and yield across treatments at harvest indicating no negative effects by the chemical on productivity. There was only slight limb damage at the highest concentrations of “Surfactant WK,” which overthinned blossoms. We recommend that based on the effectiveness, consistency, and lack of significant phytotoxicity, “Surfactant WK” be reevaluated as a thinning chemical for peach trees.

Free access

Strawberry fruit (Fragaria ×ananassa `Chandler') were evaluated at five different stages of growth and development for changes in the senescence process in fruit tissues. Levels of total antioxidant activity, hydrogen peroxide (H2O2), lipid peroxidation product, malondialdehyde, and ethylene production were determined. Total antioxidant activity (TAA) was measured in terms of in situ antioxidants to scavenge the ABTS.superscript +superscript radical cation. With the progression of ripening and senescence, there was a significant decline in TAA that coincided with increased concentration of H2O2, lipid peroxidation and increased production of ethylene. Our results illustrate that the senescence process in strawberry fruit is associated with the decline of TAA and the potential initiation and accumulation of reactive oxygen species. These results are additionally discussed in terms of potential processes associated with abiotic and biotic environmental stresses. Moreover, although strawberry fruit are typically classified as nonclimacteric, this study illustrates that the free radical mediated senescence process is similar to that of climacteric fruits.

Free access

This study was conducted to determine efficacy of Tergitol TMN-6 in thinning peach blossoms. A pretest was conducted and demonstrated no difference between TMN-6 and TMN-10 in efficacy when applied at full bloom or petal fall and at rates of 20 and 40 mL·L-1. In the main test, Tergitol TMN-6 was sprayed once at 10, 20, or 30 mL·L-1 at full bloom or petal fall and compared to an unsprayed control for 3 years. Tergitol caused widespread necrosis of flower parts including sepals, petals, pistils, stamens and peduncles. There was a difference among chemical treatments with more fruit removed at higher concentrations, although the amount of fruit removed was similar for the 20 and 30 mL·L-1 rates. There was no difference in thinning response at full bloom or petal fall, indicating a wide window of efficacy. There was also a difference among years, which was apparently not related to temperature or relative humidity during time of application. Tergitol caused some leaf yellowing and tip burn especially at the higher rates when leaves were present, but the trees did not appear to be seriously affected. Fruit weight was either not affected or larger in some years from treatment. Unlike higher concentrations, tergitol at 10 mL·L-1 did not negatively impact fruit number per tree at harvest. At harvest, fruit weight, skin blush, firmness, and soluble solids at harvest were not affected by treatment. Tergitol TMN-6 proved to be an effective thinning agent and when applied from full bloom to petal fall at 10 mL·L-1 it did not adversely affect the tree or fruit.

Free access

Several microsprinkler treatments were tested on 5-year-old satsuma mandarin orange (Citrus unshiu Marc.) trees to compare survivability of trunks and scaffold limbs in severe freezes. Three damaging freeze events occurred during winter, with two in 1995-96 and one in 1996-97. Air temperature dropped to -9.4, -5.6, and -6.7 °C, respectively. Almost 90% of the foliage was dead on the control plants after the first freezing event and 98% after the second. A single microsprinkler 1.6 m high in the canopy delivering 90.8 L·h-1 reduced injury; only 54% of the canopy was dead after the first freeze and 71% after the second. There was slightly more shoot-tip dieback on the plants in the microsprinkler treatments than on the control plants after the first two freezes. The amount of limb breakage by ice was minor. The third freeze killed 34% of the canopy in the control plants, but only 26% in the plants in the microsprinkler treatments. Use of microsprinklers increased yield in 1996, but yield for all treatments was very low. Yield for all treatments fully recovered in 1997, averaging 153 kg/tree. Although no death of scaffold limbs or trunks occurred, these results demonstrate that microsprinkler irrigation reduces damage to foliage and increases yield somewhat in severe freezes.

Full access

Despite efforts to optimize water and nutrient inputs to Florida's vegetable and fruit crops, the sandy soils, shallow water table, and tropical climate of Florida result in nutrient leaching losses that are unavoidable. Water quantity and quality management strategies that can reduce these nutrient losses from Florida's horticultural crops were reviewed and research needs for quantifying their effectiveness were identified. The water quantity management strategies included water table management for irrigation, drainage management, detention of runoff and drainage, and summer flooding. In addition to the expected water quality benefits of these practices, potential effects on crop production and farm economics were also discussed. Watershed-scale adoption of stormwater harvesting has the potential to not only reduce the nutrient loadings but also become a source of additional income for landowners through water trading. The water quality practices included structural and managerial practices (e.g., vegetative filter strips and ditch cleaning). Key research needs for reducing the unavoidable nutrient discharges included the development of a crop-specific drainage management tool; quantification of farm and watershed-scale benefits of stormwater detention and its reuse with regards to nutrient loadings, water supply, crop production, and farm income; enhancement of hydraulic efficiency of detention areas; and effects of summer flooding and ditch maintenance and cleaning on nutrient discharges.

Full access

Several microsprinkler treatments were tested on 5-year-old satsuma mandarin orange (Citrus unshiu Marc.) trees to compare survivability of trunks and scaffold limbs in severe freezes. Three damaging freeze events occurred during winter, with two in 1995–96 and one in 1996–97. Air temperature dropped to –9.4, –5.6, and –6.7 °C, respectively. Almost 90% of the foliage was dead on the control plants after the first freezing event and 98% after the second. A single microsprinkler 1.6 m high in the canopy delivering 90.8 L·h–1 reduced injury; only 54% of the canopy was dead after the first freeze and 71% after the second. There was slightly more shoot-tip dieback on the plants in the microsprinkler treatments than on the control plants after the first two freezes. The amount of limb breakage by ice was minor. The third freeze killed 34% of the canopy in the control plants, but only 26% in the plants in the microsprinkler treatments. Use of microsprinklers increased yield in 1996, but yield for all treatments was very low. Yield for all treatments fully recovered in 1997, averaging 153 kg/tree. Although no death of scaffold limbs or trunks occurred, these results demonstrate that microsprinkler irrigation reduces damage to foliage and increases yield somewhat in severe freezes.

Free access

There are a limited number of peach and nectarine cultivars available with chilling requirements that perform well in the Gulf Coast area of Alabama. A test planting of 40 peach and 13 nectarine cultivars was established in 1985 at the Gulf Coast Substation at Fairhope, Ala. The plot was prepared and trees grown according to commercial procedures. Blocks of four trees of each cultivar were planted on a 6 x 6-m spacing. Chill hours were calculated each year based on number of hours at or below 7.3 °C; starting from and including the first 10 consecutive days a total of 50 hours were accumulated to 15 Feb. Data collected included date of full bloom, first harvest date, and total yield. Fruit were measured or rated for skin color, attractiveness, firmness, stone freeness, pubescence, flesh color, dessert quality, shape, weight, percentage with split pits, and occurrence of malformed sutures and extended tips. All cultivars were evaluated for 9 years (1987–95). The best performing varieties are discussed.

Free access

This study was conducted to determine fruit quality of Satsuma mandarin Citrus unshiu, Marc. `Owari' grown on the northern coast of the Gulf of Mexico. Soluble solids increased linearly and titratable acidity decreased quadratically during October and November for the four sampling years. There was no significant interaction between sampling date and year. There was a significant year effect for titratable acidity, but not soluble solids or their ratio. A 10:1 soluble solids to titratable acidity ratio was observed on 10 Nov. Variation in fruit weight corresponded with cropload. Fruit weight increased during the sampling period due to an increase in fruit length since there was no change in width. Peel color was yellow-orange by 10 Nov., with many fruit still exhibiting patches of green color. Because of some green color present in the peel, the fruit would have to be degreened for successful marketing in U.S. retail chain stores.

Free access

A prevailing hypothesis indicates that a decrease in vegetative growth and cessation in floral initiation in strawberry in response to changes in photoperiod and temperature may correlate with hormonally induced changes. We investigated changes in endogenous free polyamines in crowns, flowers, leaves, and fruit of springbearing strawberries (Fragaria xananassa cvs. Chandler and Earliglow) in response to varying temperatures to induce flowering. Spermidine was the prominent free amine in crowns. No marked changes of putrescine, spermidine, and spermine were observed in crowns during the transition from vegetative to reproductive growth in either cultivar. In contrast, high levels of free polyamines were noted in young developing tissues such as the most recently initiated leaves, flower buds, and green fruit. When the putrescine synthesis inhibitor difluoromethylonithine (DFMO, 1 mm) was exogenously applied, levels of putrescine, spermidine, and spermine were altered in crown tissues in greenhouse experiments. These findings indicate that free polyamines may potentially be associated with the stimulation of new growth in springbearing strawberries under the present experimental conditions evaluated.

Free access

The current study was conducted to relate ice formation to the pattern and rate of leaf and stem injury of Satsuma mandarins on trifoliate orange rootstock. Potted trees were unacclimated, moderately acclimated or fully acclimated by exposing trees to 32/21 °C, 15/7 °C or 10/4 °C, respectively. Freezing treatments consisted of decreasing air temperature at 2 °C·h-1 until ice formed as evidenced by exotherms determined using differential thermal analysis of stems. Air temperature was then decreased, held constant, or increased and held constant to simulate severe, moderate and mild freeze conditions, respectively. All treatment exhibited exotherms at -2 to -4 °C, which were smaller with milder freezing treatments. Only the fully acclimated trees exhibited multiple exotherms. Leaf watersoaking, an indication of ice formation, occurred concurrently with stem exotherms except for fully acclimated trees where there was up to a 30-min delay and which corresponded with the second exotherm. Electrolyte leakage of leaves began to increase near the peak of the stem exotherm, but increased more slowly with milder freezing temperature treatments. In some treatments, electrolyte leakage reached a plateau near 50% but leaves survived. Leaves died when whole-leaf electrolyte leakage exceeded 50%. These data are discussed within the framework of a proposed mechanism of injury of Satsuma mandarin leaves by subfreezing temperatures, especially multiple exotherms of fully acclimated trees, and the plateau of electrolyte leakage of leaves at the critical level for survival.

Free access