Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: R. W. Jones x
Clear All Modify Search

Abstract

Potentiality exists for noninfectious bud-failure (BF) to develop in stocks from almond breeding programs. The manifestation of BF among varieties introduced in California since 1920 is similar to the pattern of development of BF among offspring of controlled crosses. Nonpareil, the leading almond variety, has been a parent of most newer varieties, and is predominantly featured in breeding programs. Nonpareil has BF-potential and can transmit it to offspring.

Open Access

Abstract

Yield of young lemon trees increased with either soil application of K2SO4 or foliage application of KNO3 in an orchard where leaf K was low. Leaf Zn was low but one annual foliage spray of ZnSO4 (control in this study) supplied adequate Zn and there was no response to additional Zn sprays. Peel thickness decreased, and percent juice and percent acid in the juice increased with added K.

Open Access

Flow cytometry (FC) has proven to be an efficient and reliable method to estimate nuclear DNA content (genome size) in quantifiable units useful for genetic and molecular biology studies. This method also makes possible determination of the variation in nuclear DNA content between related taxa, which gives insights into the process of speciation. In this study, DNA content was determined in nuclei isolated from leaves of 21 Dendrobium species representing each of the major taxonomic groups used in the Univ. of Hawaii breeding program. Nuclei were mechanically isolated, stained with the nucleic acid-specific fluorochrom propidium iodide, and DNA content determined using a Coulter Epics 753 laser flow cytometer. Chicken erythrocyte nuclei (2C = 2.33 pg DNA) were used as an internal standard for direct comparative measurement. The mean diploid genome (2C) values for Dendrobium species ranged from 3.36 to 5.06 pg. Genome sizes were evaluated for possible use as discrete characters for taxonomic group assignment and compared to previous data on breeding compatibility and evolutionary relationship between species.

Free access

Pawpaw (Asimina triloba) is a native North American tree that has potential as a new fruit crop or for use in landscapes, but until recently, little information has been available to nurseries on containerized production of this species. Pawpaw seedlings develop a strong taproot with a fragile root system, which can be easily damaged upon digging; therefore, most nurseries propagate trees in containers. Pawpaw seed requires stratification for optimal germination and seed is sensitive to desiccation. The seed also cannot tolerate freezing temperatures [<-15 °C (5.0 °F)]. A well-aerated potting substrate with a high sphagnum peat moss component (>75% by volume), cation exchange capacity, and water holding capacity can be used effectively in container production. Tall containers should be used to accommodate the developing taproot of seedlings. The slow-release fertilizer Osmocote 14-14-14 (14N-6.1P-11.6K) incorporated into Pro-Mix BX potting substrate can be used effectively as the sole fertilizer source at a treatment rate of 2.22 kg·m-3 (3.742 lb/yard3) in containerized pawpaw production. It can also be used at a lower rate of 0.81 kg·m-3 (1.365 lb/yard3) when supplemented with weekly applications of 500 mg·L-1 (ppm) of Peters 20-20-20 (20N-8.78P-16.6K) liquid-feed fertilizer. Bottom heating [32 °C (89.6 °F)] of container-grown pawpaw seedlings results in greater lateral and total root dry weight than in seedlings grown at ambient temperature [24 °C (75.2 °F)], which could increase the rate of establishment of seedlings in the field. Bottom heating of container-grown pawpaw seedlings could decrease both the time to produce a saleable plant and the cost of heating greenhouses. Growth of containerized pawpaw seedlings is enhanced by low to moderate shading with polypropylene shade fabric (28% or 51%) outdoors and low shading (33%) in the greenhouse, in a manner typical of that reported for other shade-preferring plants. Low to moderate shading of pawpaw seedlings grown outdoors greatly increases leaf number, total leaf area, and total plant dry weight compared to nonshaded seedlings, suggesting that commercial nurseries can improve production of containerized pawpaw seedlings using a shading regime outdoors.

Full access

The North American pawpaw [Asimina triloba (L.) Dunal] has great potential as a fruit crop or as a landscape plant. The influence of incident irradiance on pawpaw seedling growth and development in containers was examined in the greenhouse and outdoors. Root spiraling can be a problem for container-grown pawpaw seedlings; therefore, the influence of paint containing cupric hydroxide [Cu(OH)2] at 100 g·L-1 applied to the interior of containers on plant growth was also examined in a greenhouse environment. In pawpaw seedlings grown outdoors for 11 weeks, low to moderate shading levels of 28%, 51%, or 81% increased leaf number, total leaf area, and total plant dry weight (DW) compared to nonshaded seedlings. A shading level of 81% decreased the root to shoot ratio by half compared to nonshaded plants. Shading of 98% reduced leaf number, leaf size, and shoot, root, and total plant DW. Shading increased leaf chlorophyll a and b concentrations for pawpaw seedlings grown outdoors, while it decreased average specific leaf DW (mg·cm-2). In a separate greenhouse experiment, pawpaw seedlings subjected to shade treatments of 0%, 33%, 56%, 81%, or 98% did not respond as greatly to shading as plants grown outdoors. Greenhouse-grown plants had greater total and average leaf area under 33% or 56% shading than nonshaded plants; however, shading >56% reduced root, shoot, and total plant DW. Total shoot DW was greater in greenhouse grown plants with 33% shading compared to nonshaded plants. Pawpaw seedlings in control and most shade treatments (33% to 81%) in the greenhouse environment had more leaves and greater leaf area, as well as larger shoot, root, and total plant DW than seedlings in similar treatments grown outdoors. The greenhouse environment had a 10% lower irradiance, a 60% lower ultraviolet irradiance, and a significantly higher (1.23 vs. 1.20) red to far-red light ratio than the outdoors environment. Treatment of container interiors with Cu(OH)2 decreased total and lateral root DW in nonshaded seedlings, and it adversely affected plant quality by causing a yellowing of leaves and reduction of chlorophyll levels by the end of the experiment in shaded plants. Growth characteristics of pawpaw seedlings were positively influenced by low to moderate shading (28% or 51%) outdoors and low shading (33%) in the greenhouse. Seedlings did not benefit from application of Cu(OH)2 to containers at the concentration used in this study. Commercial nurseries can further improve production of pawpaw seedlings using low to moderate shading outdoors.

Free access

Abstract

Germination and radicle elongation experiments were performed with six cultivars of cucumber (Cucumis sativus L.) at seven salinity concentrations (0, 0.8, 4.0, 6.0, 9.0, 12, and 15 dS·m−1). Increasing salinity has no effect on final germination percentage after 5 days, but did decrease radicle elongation. In seedling growth studies with salinity levels ranging from 0.8 to 12 dS·m−1, increasing salt levels decreased shoot length and shoot dry weight. Analysis of shoot tissue from these seedlings indicated that higher salinity levels increased concentrations of Ca and Na, while Mg and K concentrations decreased. Yield and fruit quality were measured in a greenhouse study at two salinity levels (1.6 and 4.0 dS· m−1). Salinity significantly decreased fruit yield in five of six cultivars, but had no effect on fruit quality. Seedling shoot length of a cultivar grown at 9.0 dS· m−1 was correlated with relative yield at 4.0 dS· m−1. A salinity screening technique based on this relationship is proposed.

Open Access

Pawpaw [Asimina triloba (L.) Dunal] is a native American fruit tree that has potential as a new fruit crop or for use in landscapes, but little information is available to nurseries on the production of containerized plants. In greenhouse experiments, growth of pawpaw seedlings in Rootrainers was examined in three fertilization regimes, two root-zone temperatures, and four substrates [ProMix, 6 pine bark: 1 sand (v/v), 1 sand: 1 sphagnum peat, and 4 pine bark: 1 sand: 1 sphagnum peat medium]. A similar germination rate of 80% was obtained in all substrates. Weekly fertigation treatments were imposed when seedlings had 2 to 3 leaves, at 0, 50, and 100 mg·L-1 N as Peters 20N-8.6P-16.6K water-soluble fertilizer plus soluble trace elements. After 140 days at the highest fertilizer rate, plant height, leaf number, and dry weight (roots, shoots, and total plant) were greater in ProMix and 1 sand:1 sphagnum peat than in 6 pine bark: 1 sand (v/v) or 4 pine bark: 1 sand: 1 sphagnum peat. Also, the root: shoot ratio was lower in ProMix and 6 pine bark: 1 sand (v/v). Overall, plant biomass production was greater in ProMix than in 6 pine bark: 1 sand (v/v). In a separate experiment, bottom heat (32 ± 0.3 °C) hastened seedling emergence from ProMix by 9 days compared to ambient root-zone conditions (24 ± 0.2 °C). An average seedling height of 10 cm was attained by ambient plants 79 days after sowing, whereas seedlings with bottom heat reached this height after 69 days. Seedlings subjected to bottom heat had increased leaf number (30%), plant height (32%), whole plant leaf area (94%), shoot dry weight (104%), root dry weight (50%), lateral root dry weight (125%), and total plant dry weight (87%). Seedlings with bottom heat had a reduction in root: shoot ratio of 25% and in specific leaf dry weight of 16% compared to ambient plants. Seedlings subjected to bottom heat had a higher leaf chlorophyll (chl) concentration of chl a (39%), chl b (33%), chl p (43%), total chl (38%), and chl a: b ratio (8%) than seedlings grown without bottom heat. Pawpaw seedling growth was best using ProMix with 100 mg·L-1 N Peters applied once weekly, or using ProMix with bottom heat and 50 mg·L-1 N Peters applied twice per week.

Free access

Parameterizing crop models for more accurate response to climate factors such as temperature is important considering potential temperature increases associated with climate change, particularly for tomato (Lycopersicon esculentum Mill.), which is a heat-sensitive crop. The objective of this work was to update the cardinal temperature parameters of the CROPGRO-Tomato model affecting the simulation of crop development, daily dry matter (DM) production, fruit set, and DM partitioning of field-grown tomato from transplanting to harvest. The main adaptation relied on new literature values for cardinal temperature parameters that affect tomato crop phenology, fruit set, and fruit growth. The new cardinal temperature values are considered reliable because they come from recent published experiments conducted in controlled-temperature environments. Use of the new cardinal temperatures in the CROPGRO-Tomato model affected the rate of crop development compared with prior default parameters; thus, we found it necessary to recalibrate genetic coefficients that affect life cycle phases and growth simulated by the model. The model was recalibrated and evaluated with 10 growth analyses data sets collected in field experiments conducted at three locations in Florida (Bradenton, Quincy, and Gainesville) from 1991 to 2007. Use of modified parameters sufficiently improved model performance to provide accurate prediction of crop and fruit DM accumulation throughout the season. Overall, the average root mean square error (RMSE) over all experiments was reduced 44% for leaf area index, 71% for fruit number, and 36% for both aboveground biomass and fruit dry weight simulations with the modified parameters compared with the default. The Willmott d index was higher and was always above 0.92. The CROPGRO-Tomato model with these modified cardinal temperature parameters will predict more accurately tomato growth and yield response to temperature and thus be useful in model applications.

Free access

Tomato (Lycopersicon esculentum Mill.) accessions were tested for hypersensitivity and rated for resistance following field inoculation with tomato race 3 (T3) of the bacterial spot pathogen Xanthomonas campestris pv. vesicatoria (Doidge) Dye (Xcv) in 1992 and 1993. Hawaii 7981, PI 126932, PI 128216, and selections of the latter two expressed hypersensitivity. Hawaii 7981, only tested in the field in 1993, was nearly symptomless and developed significantly less disease than any other accession. PI 128216 had a level of disease similar to susceptible `Solar Set' when tested in 1993. However, a selection from it (PI 126218-S) was significantly more resistant than `Solar Set' in both years. Although PI 126932 had a level of disease similar to `Solar Set' in both years, a selection from it (PI 126932-1-2) was significantly more resistant than `Solar Set' in 1993. Other accessions without hypersensitive responses but more resistant than `Solar Set' for two seasons were PI 114490, PI 126428, PI 340905-S, and PI 155372. Hawaii 7975 was significantly more resistant than `Solar Set' in the one season it was tested.

Free access

Fifteen shortday onion cultivars grown at two production locations (GB and ST) in the Lower Rio Grande Valley, Texas were evaluated for pungency levels using gas chromatography (GC) and pyruvic acid tests.

Significant differences (P=0.05) were observed between cultivars in the pyruvic acid and GC tests within each location. Pyruvic acid content ranged from 3.0 to 5.1 μmol·g-1 fresh wt. The amount of total sulfur volatiles measured by the GC method ranged from 28 × 103 to 58 × 103EU. The correlation coefficients between GC and pyruvic acid were 0.10*** and 0.18*** at the GB and ST location, respectively.

When the two locations were combined, no significant differences (P=0.05) were observed between cultivars or locations using the GC test. However, the pyruvic acid test showed significant differences between locations. This result indicated that each cultivar had a different response in pungency as influenced by production location or environment.

Free access