Search Results
Drought conditions in the western United States have limited water availability for the irrigation of agricultural products. This can have a dramatic impact on yield and quality of specialty perennial crops, such as juice grapes (Vitis labruscana Bailey). Washington State juice grape industry typically irrigates to 100% of crop-specific evapotranspiration (ETc) throughout the season to minimize yield loss. However, as conditions have limited water availability, growers need a new strategy to cope with the limited water supply. Regulated deficit irrigation (RDI) applies less water than plant ETc and has been shown to improve fruit quality in red wine grapes (Vitis vinifera). The objectives of this study were to evaluate the effects of RDI treatments on the yield and quality of ‘Concord’ juice grapes as compared with current commercial practice. The treatments reduced the amount of water applied between bloom and veraison by 25% (−25%), 33% (−33%), and 45% (−45%) from the control application. The results of this 4-year study initially indicated a dramatic decrease in yield in the −45% treatment (7.5 Mg/ha) as compared with the control treatment (19.2 Mg/ha); however, yield for the RDI treatments recovered in the subsequent seasons and was not statically different from the control. There were no statistical differences in fruit quality between treatments. This indicates that RDI has the potential to decrease water applied between bloom and veraison without impacting fruit quality; however, to avoid a sudden decrease in yield, it would be necessary to gradually reduce water applications over several years.
Heat-related fruit damage is a prevalent issue in northern highbush blueberry (Vaccinium corymbosum L.) in various growing regions, including the northwestern United States. To help address the issue, we developed a simple climatological model to predict blueberry fruit temperatures based on local weather data and to simulate the effects of using over-canopy sprinklers for cooling the fruit. Predictions of fruit temperature on sunny days correlated strongly with the actual values (R 2 = 0.91) and had a root mean-square error of ≈2 °C. Among the parameters tested, ambient air temperature and light intensity had the greatest impact on fruit temperature, whereas wind speed and fruit size had less impact, and relative humidity had no impact. Cooling efficiency was estimated successfully under different sprinkler cooling intervals by incorporating a water application factor that was calculated based on the amount of water applied and the time required for water to evaporate from the fruit surface between the intervals. The results indicate that water temperature and nozzle flow rate affected the extent to which cooling with sprinklers reduced fruit temperature. However, prolonging the runtime of the sprinklers did not guarantee lower temperatures during cooling, because cooling efficiency declined as the temperature of the fruit approached the temperature of the irrigation water. Users could incorporate the model into weather forecast programs to predict the incidence of heat damage and could use it to make cooling decisions in commercial blueberry fields.