Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: R. Murray x
Clear All Modify Search

University of California Extension field staff are well educated and highly trained to conduct sound applied research. Part of this training includes statistical classes. Data that fail to attain a 95% confidence level are considered “risky.” This is inconsistent with “risk” assumed in almost every other aspect of our lives. There are ample examples of people willingly taking “high” risks. Examples include legalized gambling, marriage, insurance actuarial tables, etc. Most of us are willing to take calculated risks, depending on the importance and cost of making an incorrect assumption. This is directly applicable to agricultural production enterprises. While the comfortable level of risk will vary among producers, there is interest in technologies that have confidence levels below 95%. Australian processing tomato researchers have developed a Residual Maximum Likelihood (REML) analysis tool to address this issue. REML was designed to simplify interpretation of a relatively complex data set, including statistics, so a farmer can make choices at a risk level they find appropriate. The model incorporates pairwise t tests, an interactive computer program, and a gambling analogy in its analyses. Multiple variables can be entered and the model provides odds that the desired result will be attained. The user can determine the relative importance of each variable as part of the determination. This model, and implications for adoption by producer clientele, will form the basis for the presentation.

Free access

Methyl cinnamate and citral, compounds used in large quantities by perfume and flavoring industries, are the major constituents of essential oils found in certain basil varieties. The composition and quantity of oil, sequestered in as many as 16 different types of glandular structures, however, has been shown to change over time with plant development. In this study, we used scanning electron microscopy to characterize glands associated with leaves and flower parts of 3 lines of Ocimum basilicum, 2 with a high percentage of metyl cinnamate and one with high citral (as rel. percent of total oil). Density and distribution of oil producing glands were visualized with a tissue printing method on adaxial and abaxial leaf surfaces of young, mature, and post-mature leaves. Scanning electron micrographs revealed the morphology of six types of glandular structures. Density of oil-producing glands decreased with leaf expansion. The tissue printing method allowed for rapid visualization of oil-containing glands. The density of resulting prints will be easily quantified with computer image analysis.

Free access

Flesh softening is a major quality parameter that can limit long-term storage of apple cultivars. This study investigated the combined effects of preharvest AVG (Retain™) application, 1-methylcyclopropene (1-MCP; EthylBloc™) exposure at harvest, and commercial controlled atmosphere (CA) storage (2.0% O2 + 2.5% CO2) on flesh softening of `Empire' apple. Treatments were assigned in a split-split-plot experimental design; AVG and no AVG application as the main-plot, CA and air storage as the sub-plots, and 0, 0.1 0.5, 1.0 mL·L–1 1-MCP as the sub-sub-plots. Apples were removed from storage at 70 and 140 days after harvest and kept up to an additional 2 weeks at 20 °C for post-storage assessment of ripening. Preharvest AVG application of `Empire' fruit delayed maturation slightly as determined by starch index at harvest, but did not affect fruit size at harvest nor flesh softening in storage. All levels of 1-MCP were equally effective in controlling fruit softening both in air and CA, as 1-MCP-treated fruit were ≈2.5 kg firmer than untreated fruit. This firmness advantage was still evident even after 2 weeks at 20 °C, with CA-stored fruit holding their firmness the best. When all three technologies were combined, treated fruit were overall 156% firmer than control fruit (no AVG, no 1-MCP, air-stored). As well, ethylene production and emanation of aroma volatiles were reduced significantly in these fruit. Therefore, the synergism of AVG, 1-MCP and long-term CA storage could potentially hold flesh firmness and other ripening parameters of apples to values near those found at harvest.

Free access

Greenhouse experiments were conducted to determine the response of Brassica oleracea L., pac choi to fertilizer rates and sources and to establish optimal soluble nitrogen (N) application rates and nitrate meter sufficiency ranges. Conventional soluble fertilizer was formulated from inorganic salts with a 4:1 NO3-N:NH4-N ratio. Phosphorus (P) was held at 1.72 mm and potassium (K) at 0.83 mm for all treatment levels. The organic soluble fertilizer, fish hydrolyzate (2N–1.72P–0.83K), was diluted to provide the same N levels as with conventional treatments. Both fertilizers were applied at N rates of 0, 32, 75, 150, 225, 300, and 450 mg·L−1. Seedlings were transplanted and fertilizer application began at 18 days. Plants were harvested at 7 weeks (5 weeks post-transplanting) after receiving 15 fertilizer applications during production. Samples of the most recently matured leaves were harvested weekly and analyzed for petiole sap NO3-N and leaf blade total N concentration. Leaf count, leaf length, and chlorophyll content were also measured weekly. Fresh and dry weights were determined on whole shoots and roots. Optimum yield was achieved at the 150-mg·L−1 fertility rate with both conventional and organic fertilizers. Field and high tunnel experiments were conducted to validate the sufficiency ranges obtained from the greenhouse studies. Sufficiency levels of NO3-N for pac choi petiole sap during Weeks 2 to 3 of production were 800 to 1500 mg·L−1 and then dropped to 600 to 1000 mg·L−1 during Weeks 4 through harvest for both conventional and organic fertilizers sources. Total N in leaf tissue was less responsive to fertilizer rate effects than petiole sap NO3-N. Chlorophyll content was not useful in evaluating pac choi N status. These guidelines will provide farmers with information for leaf petiole sap NO3-N to guide in-season N applications.

Free access

The color of red potato tubers is due to an accumulation of anthocyanins in periderm and peripheral cortex tissues. The objective of this study was to characterize changes in anthocyanin content and tuber surface color during tuber development. Using the red tuber-producing potato (Solanum tuberosum L.) cultivar Norland, we observed that chroma (intensity of redness) and anthocyanin content per unit of surface area of greenhouse-grown tubers decreased as tuber weight increased. There was no increase in hue (tint) during the same developmental periods. Using high-performance liquid chromatography (HPLC), we determined that pelargonidin and peonidin are the major anthocyanidins (aglycones of anthocyanins) in the tuber periderm. Northern blot analyses indicated that steady-state mRNA levels of dihydroflavonol reductase (DFR), an anthocyanin biosynthetic enzyme, continued throughout tuber development. These results suggest that anthocyanins are synthesized throughout tuber development, and that cell division and/or enlargement contribute to a decline in chroma and anthocyanin concentration.

Free access

Field-grown cut and dried flowers could provide a high-value crop selection for New Mexico. We conducted a 1-year field study to evaluate flower yield and quality characteristics of common globe amaranth (Gomphrena globosa), ‘Strawberry Fields’ globe amaranth (Gomphrena haageana), cockscomb celosia (Celosia argentea var. cristata ‘Chief Mix’), and wheat celosia (Celosia spicata ‘Pink Candle’). Within-row spacing of 15 or 20 cm combined with two-row or three-row per bed plantings resulted in field planting densities ranging from 66,670 to 120,010 plants/ha of common globe amaranth and ‘Strawberry Fields’ globe amaranth, and 100,005 to 200,010 plants/ha of cockscomb and wheat celosia. All but cockscomb celosia produced four harvests that began 22 May and ended 18 Oct., depending on species. Both globe amaranth species had a 5- to 6-month harvest season, two to three midseason to late-season peak harvests, and over 1000 harvested stems totaling 1.4 to 1.8 kg dry weight per 1.5-m2 plot across the season. Both celosia species had a 4.5-month harvest season, one early summer peak harvest, and fewer than 300 harvested stems totaling 0.6 to 0.7 kg dry weight per plot for the year. Seasonally progressive increases in flowering stem length of both globe amaranth species and wheat celosia, and in flowering stem diameter of both globe amaranth species and cockscomb celosia, were observed. Flowering head size of both globe amaranth species and of wheat celosia varied little with harvest season, whereas the head diameter of cockscomb celosia increased with the season. Postharvest flower retention after mechanical impact was about 2% higher for common globe amaranth than it was for ‘Strawberry Fields’ globe amaranth, decreased by about 6% from early to later harvests for both celosia species, and was inversely related to the head size of both globe amaranth species and cockscomb celosia. Despite the wide range in planting density, the density effect was largely limited to cockscomb celosia. For that species, three-row planting (high density) increased the total number of spray flower (multiple head) stems, provided longer stems later into the season and wider heads midway into the season, and prolonged the production of spray stems (15-cm spacing only). Results demonstrate that these four species are excellent candidates as new specialty crops in semiarid conditions.

Full access

The sustainability of soil quality under high tunnels will influence management of high tunnels currently in use and grower decisions regarding design and management of new high tunnels to be constructed. Soil quality was quantified using measures of soil pH, salinity, total carbon, and particulate organic matter (POM) carbon in a silt loam soil that had been in vegetable production under high tunnels at the research station in Olathe, KS, for eight years. Soil under high tunnels was compared with that in adjacent fields in both a conventional and an organic management system. The eight-year presence of high tunnels under the conventional management system resulted in increased soil pH and salinity but did not affect soil carbon. In the organic management system, high tunnels did not affect soil pH, increased soil salinity, and influenced soil carbon (C) pools with an increase in POM carbon. The increases in soil salinity were not enough to be detrimental to crops. These results indicate that soil quality was not adversely affected by eight years under stationary high tunnels managed with conventionally or organically produced vegetable crops.

Free access

Growing vegetables in controlled environments (CEs), such as hydroponics, aquaponics, and vertical structures, is a rapidly expanding industry in Florida and the United States, especially in nearby urban areas. Although lettuce (Lactuca sativa) is still mostly produced in fields, growing in CEs proximal to urban areas has become increasingly popular because it may facilitate reduced transportation time and associated postharvest degradation. Lettuce is among the top-most consumed vegetables in the United States and could provide some of the nutrition missing in the US diet. This research was planned to understand the levels of some vitamins that are key for human health, including vitamin E (tocopherols), vitamin K1 (phylloquinone), and vitamin C (ascorbic acid), in lettuce grown in greenhouse hydroponics. Lettuce germplasm was grown using the hydroponic nutrient film technique system in three greenhouse experiments: at the beginning, middle, and end of the Florida, USA, growing season (from Aug 2020 to Mar 2021). Genetic variation for these vitamins were found among the germplasm tested in the four morphological types of lettuce, romaine, Boston, Latin, and leaf. In addition, a sugar analysis was conducted in this germplasm, of which fructose was the most abundant sugar. A significant genotype × environment (G × E) interaction was observed, indicating that the levels of these compounds, especially vitamins, was environment dependent. However, the presence of certain non-crossover G × E interactions indicates that selecting lettuce in a representative environment could result in new cultivars with higher vitamin content. This research marks the initial steps to improve lettuce for these vitamins, which can contribute to better health of US consumers, not for the highest amount of these compounds in lettuce but for the offset due to its high consumption.

Open Access