Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Qiong Zhang x
Clear All Modify Search

Bletilla is an Orchidaceae genus with high medical value, including detumescence, antibacterial, and hemostasis. In this study, detailed estimates of ploidy level, karyotype, and genome size were first obtained, and a comprehensive cytological analysis was carried out to better understand the evolution of the genus. The karyotypes of Bletilla were mainly composed of metacentric and submetacentric chromosomes with lengths ranging from 1.25 to 4.93 μm. There was moderate cytological variation in Bletilla (chromosome number 2n = 32 to 76). Diploid with 2n = 34 and 2n = 36 was detected in Bletilla ochracea and Bletilla formosana, respectively, whereas diploid (2n = 32) was dominant in Bletilla striata, dysploidy (2n = 34, 2n = 36) and polyploid (2n = 48, 51, 64, 76) variations were also observed. Three species had a relatively symmetric karyotype, and which of B. ochracea was more asymmetry. The genome size (1C-values) varied from 2.94 pg (B. striata) to 3.33 pg (B. ochracea), of which B. ochracea was significantly larger than the others (P < 0.05). A positive correlation (P < 0.01) between 1Cx vs. haploid chromosome length (HCL) and asymmetry coefficient of karyotypes (AsK%) was observed.

Open Access

Flesh browning is an important negative trait for quality preservation of fresh-cut fruits. To obtain a better understanding of the inheritance and genetic control of flesh browning in apple, the phenotype of a hybrid population derived from ‘Jonathan’ × ‘Golden Delicious’ was studied for 2 successive years. The inheritance of the flesh browning trait was analyzed by the frequency distribution of the phenotypes. Flesh browning-associated major genes were then mapped by screening genome-wide simple sequence repeat (SSR) markers. Flesh browning is inherited quantitatively and showed a clear bimodal frequency distribution, indicating that the segregation of major genes is involved in the variation. The segregation ratio of light and heavy browning was 7:1 in 2010, 2011, and 2010 + 2011, suggesting that the inheritance of the trait in apple involves three segregated loci of major genes. The heritability of the major gene effect was 72.14% and 72.76% in 2010 and 2011, respectively. SSR markers were screened from 600 pairs of SSR primers located on 17 apple linkage groups (LGs). The three major genes were mapped on LG10, 15, and 17 on the apple genome, respectively, by linkage analysis of flesh browning phenotypes and the genotypes of SSR markers. Two quantitative trait loci (QTLs) for flesh browning were mapped on LG15 of ‘Jonathan’ and LG17 of ‘Golden Delicious’, respectively, which are the same linkage groups that two major genes mapped on.

Free access

In the early Spring of 2015 and 2016, weed infestation surveys were conducted in areas of cool-season turfgrass Festuca arundinacea Schreb. at 23 sites within Tianjin municipality in northern China. The weed community within turfgrass areas comprised 37 weed species belonging to 14 families. Perennial weeds accounted for 45.9% of the total community of weed species, whereas annual or biennial weeds accounted for 54.1%. Asteraceae was the dominant family (43.2%), and the percentage of broadleaved weeds was 94.6%. Statistical analyses of the weed dominance index (integrating weed relative height and relative coverage) and relative abundance (integrating weed relative density, frequency, and uniformity) showed that the 10 most common weed species during the early spring were Ixeris polycephala Cass., Taraxacum mongolicum Hand.-Mazz., Inula japonica Thunb., Hemistepta lyrata Bge., Trigonotis pedunclaris (Trev.) Benth., Calystegia hederacea Wall., Lepidium apetalum Willd., Plantago asiatica L., Cirsium segetum Bge., and Ixeris sonchifolia Hance. Ixeris polycephala Cass. and T. mongolicum Hand.-Mazz were the most dominant and harmful weed species. Partial correlation analysis (PACA) indicated that the deterioration rate (percentage of bare soil or coverage of plants other than turfgrass) of the turfgrass area was significantly and positively correlated with the total dominance index [(TDI), an index to evaluate the weed infestation severity)] and that the soil organic matter (SOM) and salinity factors were negatively correlated with the TDI. Factors such as soil nutrient conditions (the contents of N, P, and K and the total N), soil physical properties (density and clay content), soil moisture, soil temperature, and soil pH did not correlate significantly with the TDI. We conclude that the deterioration rate was the most important factor influencing weed infestation in the early spring and that SOM and soil salinity might also be important factors. The results of this study can help turfgrass researchers and managers identify the most harmful weed species and integrate management strategies in areas of cool-season turfgrass F. arundinacea Schreb. during early spring in the Tianjin region, China.

Free access