Search Results
To investigate plant growth and quality responses to different light spectral combinations, cabbage (Brassica oleracea L. var. capitata f. rubra), kale (Brassica napus L. ‘Red Russian’), arugula (Eruca sativa L.), and mustard (Brassica juncea L. ‘Ruby steak’) microgreens were grown in a controlled environment using sole-source light with six different spectra: 1) FL: cool white fluorescent light; 2) BR: 15% blue and 85% red light-emitting diode (LED); 3) BRFRL: 15% blue, 85% red, and 15.5 µmol·m−2·s−1 far-red (FR) LED; 4) BRFRH: 15% blue, 85% red, and 155 µmol·m−2·s−1 FR LED; 5) BGLR: 9% blue, 6% green, and 85% red LED; and 6) BGHR: 5% blue, 10% green, and 85% red LED. For all the light treatments, the total photosynthetic photon flux density (PPFD) was set at ≈330 µmol·m−2·s−1 under a 17-hour photoperiod, and the air temperature was ≈21 °C with 73% relative humidity (RH). At harvest, BR vs. FL increased plant height for all the tested species except arugula, and enlarged cotyledon area for kale and arugula. Adding high-intensity FR light to blue and red light (i.e., BRFRH) further increased plant height for all species, and cotyledon area for mustard, but it did not affect the fresh or dry biomass for any species. Also, BRFRH vs. BR increased cotyledon greenness for green-leafed species (i.e., arugula, cabbage, and kale), and reduced cotyledon redness for red-leafed mustard. However, BGLR, BGHR, and BRFRL, compared with BR, did not affect plant height, cotyledon area, or fresh or dry biomass. These results suggest that the combination of 15% blue and 85% red LED light can potentially replace FL as the sole light source for indoor production of the tested microgreen species. Combining high-intensity FR light, rather than low-level (≤10%) green light, with blue and red light could be taken into consideration for the optimization of LED light spectral quality in microgreen production under environmental conditions similar to this experiment.
To determine whether supplemental blue light (B) or far-red light (FR) overnight can promote microgreen elongation to facilitate machine harvesting and improve microgreen quality and yield, two common microgreen species, mustard (Brassica juncea) and arugula (Eruca sativa), were grown in a greenhouse in Guelph, Ontario, Canada, during January 2019. Low-intensity (14 μmol·m−2·s−1) B or FR was applied to microgreens overnight from 1730 hr to 0630 hr, and no supplemental lighting (D) was used as a control. After 2 weeks of light treatments, B compared to D promoted stem elongation by 16% and 10%, respectively, and increased crop yield by 32% and 29%, respectively, in mustard and arugula. B compared to D also increased the cotyledon area in mustard and leaf mass per area in arugula and enhanced cotyledon color in both species despite having no effects on total chlorophyll, carotenoid, and phenolic contents. However, FR did not increase stem length or fresh weight compared with D, reduced plant height compared with B in both species, and reduced the cotyledon area in arugula. FR, compared with D and B, reduced the stem diameter and phytochemical contents of both species. Therefore, low-intensity B can be applied overnight for winter greenhouse microgreen production because of its beneficial effects on appearance quality and crop yield without negatively affecting nutritional quality.
To facilitate machine harvest for labor savings, the height of microgreens needs to reach ≈5 cm. Recent studies indicate that monochromatic blue light (B) can promote stem elongation similar to far-red light (FR). To examine whether nighttime B treatments can promote plant elongation without compromising yield and quality, mustard (Brassica juncea) and arugula (Eruca sativa) microgreens were grown under different light-emitting diode (LED) lighting regimes in a growth chamber. The 16-hour daytime lighting comprised 20% B and 80% red light (R), and had a total photosynthetic photon flux density (PPFD) of 300 µmol·m–2·s–1 at canopy level. During the 8-hour nighttime, the plants were exposed to the following treatments: 1) dark (D) as one control; 2) 4 hours of B at 40 µmol·m–2·s–1 followed by 4 hours of darkness (40B-D); 3) 4 hours of darkness followed by 4 hours of B at 40 µmol·m–2·s–1 (D-40B); 4) 8 hours of B at 20 µmol·m–2·s–1 (20B); 5) 8 hours of B + FR, and each of them at 20 µmol·m–2·s–1 (20B20FR); and 6) 8 hours of FR at 20 µmol·m–2·s–1 (20FR) as another control. The plants were harvested after 11 days of treatment. Nighttime B treatments (40B-D, D-40B, and 20B), compared with D, increased plant height by 34% and 18% for mustard and arugula, respectively, with no difference among the three B treatments. The combination of B and FR (20B20FR), compared with B alone, further increased plant height by 6% and 15% for mustard and arugula, respectively, and showed a similar promotion effect as 20FR. Plant height did not meet the machine harvest requirement for both species with the D treatment, but did so for mustard with the nighttime B treatments and for arugula with the 20B20FR treatment. There was no difference in biomass among all treatments except that 20B, compared with D, increased the fresh weight (FW) of arugula by 12%, showing a similar promotion effect as 20FR. Despite a greater promotion effect on elongation than B alone, 20FR reduced the leaf index compared with D. However, B alone or the 20B20FR treatment increased leaf thickness compared with D, and increased chlorophyll content index (CCI), leaf index, dry matter content, and leaf thickness to varying degree with species, compared with 20FR. Overall, nighttime B alone, or its combination with FR, promoted microgreen elongation without compromising yield and quality.
Microgreens are specialty vegetables that contain human health-promoting phytochemicals. Typically, microgreens are cultivated in controlled environments under red and blue light-emitting diodes (LEDs). However, the impact of varying the proportions of these light qualities on the composition of diverse phytochemicals in indoor-grown microgreens is unclear. To address this problem, the levels of chlorophylls, carotenoids, ascorbates, phenolics, anthocyanins, and nitrate were examined in arugula (Eruca sativa L.), ‘Red Russian’ kale [Brassica napus L. subsp. napus var. pabularia (DC.) Alef.], ‘Mizuna’ mustard (Brassica juncea L.), and red cabbage (Brassica oleracea L. var. capitata f. rubra) microgreens following cultivation under LEDs supplying varying proportions of blue light (5% to 30%) and red light (70% to 95%). Varying the proportion of blue light did not affect the extractable levels of total chlorophyll, total carotenoids, or nitrate in all four microgreen species. Generally, the levels of reduced and total ascorbate were greatest in arugula, kale, and mustard microgreens at 20% blue light, and a minor decrease was apparent at 30% blue light. These metabolite profiles were not impacted by the blue light percentage in red cabbage. Kale and mustard accumulated more total phenolics at 30% blue light than all other blue light regimens; however, this phytochemical attribute was unaffected in arugula and red cabbage. The total anthocyanin concentration increased proportionally with the percentage of supplied blue light up to 30% in all microgreens, with the exception of mustard. Our research showed that 20% blue light supplied from LED arrays is ideal for achieving optimal levels of both reduced and total ascorbate in all microgreens except red cabbage, and that 30% blue light promotes the greatest accumulation of total anthocyanin in indoor-grown Brassicaceae microgreens, with the exception of mustard.
Indoor farming is an increasingly popular approach for growing leafy vegetables, and under this production system, artificial light provides the sole source (SS) of radiation for photosynthesis and light signaling. With newer horticultural light-emitting diodes (LEDs), growers have the ability to manipulate the lighting environment to achieve specific production goals. However, there is limited research on LED lighting specific to microgreen production, and available research shows that there is variability in how microgreens respond to their lighting environment. The present study examined the effects of SS light intensity (LI) on growth, yield, and quality of kale (Brassica napus L. ‘Red Russian’), cabbage (Brassica oleracea L.), arugula (Eruca sativa L.), and mustard (Brassica juncea L. ‘Ruby Streaks’) microgreens grown in a walk-in growth chamber. SS LEDs were used to provide six target photosynthetic photon flux density density (PPFD) treatments: 100, 200, 300, 400, 500, and 600 μmol·m−2·s−1 with a photon flux ratio of 15 blue: 85 red and a 16-hour photoperiod. As LI increased from 100 to 600 μmol·m−2· s−1, fresh weight (FW) increased by 0.59 kg·m−2 (36%), 0.70 kg·m−2 (56%), 0.71 kg·m−2 (76%), and 0.67 kg·m−2 (82%) for kale, cabbage, arugula, and mustard, respectively. Similarly, dry weight (DW) increased by 47 g·m−2 (65%), 45 g·m−2 (69%), 64 g·m−2 (122%), and 65 g·m−2 (145%) for kale, cabbage, arugula, and mustard, respectively, as LI increased from 100 to 600 μmol·m−2· s−1. Increasing LI decreased hypocotyl length and hue angle linearly in all genotypes. Saturation of cabbage and mustard decreased linearly by 18% and 36%, respectively, as LI increased from 100 to 600 μmol·m−2·s−1. Growers can use the results of this study to optimize SS LI for their production systems, genotypes, and production goals.