Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Qing Xia x
Clear All Modify Search
Full access

Phu-Long Pham, Ying-Xue Li, He-Rong Guo, Rui-Zhen Zeng, Li Xie, Zhi-Sheng Zhang, Jianjun Chen, Qing-Lian Su and Qing Xia

Dendrobium officinale Kimura et Migo is a famous traditional Chinese medicinal plant. It produces various phytochemicals, particularly polysaccharides, which have nutraceutical and pharmaceutical values. To increase its biomass production and polysaccharide content, our breeding program has generated a series of polyploid cultivars through colchicine treatment of protocorm-like bodies (PLBs). The present study compared two tetraploid cultivars, 201-1-T1 and 201-1-T2, with their diploid parental cultivar, 201-1, in an established in vitro culture system. Tetraploid ‘201-1-T1’ and ‘201-1-T2’ had shorter leaves and shorter and thicker stems and roots, and they produced higher biomass compared with the diploid cultivar. The length and width of stomata significantly increased, but stomatal density decreased in tetraploid cultivars. The PLB induction rates from the stem node explants of the tetraploid cultivars were significantly higher than those of diploid. However, the PLB proliferation of tetraploids was lower than that of the diploid. The mean number of plantlets regenerated from tetraploid PLBs was also lower than that of the diploid after 4 months of culture. Polysaccharide contents in stems, leaves, and roots of 6-month-old tetraploid plantlets were significantly higher than those of diploids. The polysaccharide content in the stem of ‘201-1-T1’ was 12.70%, which was a 2-fold increase compared with the diploid cultivar. Our results showed that chromosome doubling could be a viable way of improving D. officinale in biomass and polysaccharide production.

Free access

Wei-Ling Yuan, Shang-yong Yuan, Xiao-hui Deng, Cai-xia Gan, Lei Cui and Qing-fang Wang

Efficient nitrogen (N) fertilizer management is crucial for ensuring the maximum economic yield and reducing the risk of environmental pollution. The objective of this study was to determine the effect of N fertilizer management on root yield and N uptake of radish in southern China by using 15N isotope tracing. A 2-year field experiment was conducted with three N rates (0, 60, and 120 kg N/ha) and two different application proportions, viz, A [50% at basal, 20% at 15 days after seeding (DAS), 30% at 30 DAS] and B (30% at basal, 20% at 15 DAS, 50% at 30 DAS) for each N rate, which were expressed as N0, N60A, N60B, N120A, and N120B, respectively. The results showed that root yields were significantly increased with N rates increasing from 0 to 120 kg N/ha. The root yields for N120A and N120B were 67.60 t·ha−1 and 72.50 t·ha−1 at harvest, 64.07% and 66.67% higher than those for the treatments of N60A and N60B, respectively. Mean radish recovery of N fertilizer ranged from 25.90% at N120A to 32.60% at N60B, and N fertilizer residual rate in the soil ranged from 11.50% at N120A to 14.90% at N60B. About 17.50% to 35.70% of total uptake of 15N derived from basal fertilizer was absorbed at seeding stage. However, 61.87% to 80.18% of total uptake of 15N derived from topdressing fertilizer absorbed at root expanding stage. Therefore, appropriate nitrogen application with increasing topdressing nitrogen amount could increase root yield of radish and the nitrogen recovery efficiency. Nitrogen fertilizer application recommended was 120 kg N/ha with 30% for basal, 20% for 15 DAS and 50% for 30 DAS in this study.