Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Qichang Yang x
  • All content x
Clear All Modify Search
Full access

Kun Li, Qi-Chang Yang, Yu-Xin Tong, and Ruifeng Cheng

In this study, the effects of light-emitting diode (LED) panels with different illumination schedules and mounted above butterhead lettuce (Lactuca sativa var. capitata) seedlings on lettuce growth and photosynthesis were examined, and the performance of the vertical and horizontal movable system on energy savings was evaluated. The illumination schedules used were fixed LED [F-LED (four LED panels illuminated the area below)] and movable LED [M-LED (two LED panels moved left and right once per day to illuminate the same area as F-LED)] at distances of 10 and 30 cm above the seedlings. The plant yields were uniform in all LED treatments. The highest light utilization efficiencies and lowest electricity consumption were found for the treatments with irradiation from a shorter distance above the seedlings. The true leaf numbers and ascorbic acid concentrations were the highest in the M-LED and F-LED treatments at a distance above the seedlings of 10 cm, while the leaf lengths and sucrose concentrations in these groups were significantly lower than those in the 30-cm treatment. These results indicate that illumination with M-LED can halve the initial light source input while maintaining yield and that sustained illumination from a shorter distance above the seedlings is the main factor in electricity savings.

Open access

Lie Li, Yu-xin Tong, Jun-ling Lu, Yang-mei Li, and Qi-chang Yang

Light, as the energy and signal sources for plant growth and development, is one of the most important environment factors in recently developed plant factories with artificial light (PFALs). To find the optimal combination of light wavelengths for lettuce (Lactuca sativa cv. ‘Tiberius’) plant growth in a PFAL, four treatments, each using red (R; 662 nm) and blue light (B; 447 nm) with a ratio of 4:1 and photon flux density (PFD) of 150 μmol·m−2·s−1, and mixing, respectively, with 50 μmol·m−2·s−1 of green light (G; 525 nm; RBG), yellow light (Y; 592 nm; RBY), orange light (O; 605 nm; RBO) and far-red light (FR; 742 nm; RBFR), were set up during this experiment. A combination of R and B with a ratio of 4:1 and PFD of 200 μmol·m−2·s−1 was set as the control (RB). The responses of lettuce growth, morphology, anatomical structure of the lettuce leaf, photosynthetic performance, lettuce nutritional quality, and energy use efficiency were investigated. The results showed that RBG, RBO, and RBFR increased the shoot fresh weight of lettuce by 20.5%, 19.6%, and 40.4%, and they increased the shoot dry weight of lettuce by 24.2%, 13.4%, and 45.2%, respectively, compared with those under RB. The Pn under RBY was significantly lower than that under RB, although no significant differences in chlorophyll or carotenoid content were found between RBY and RB. RBG increased the lettuce leaf area, the thickness of the leaf palisade tissue, Pn, and light use efficiency compared with those under RB. Plants grown under RBO showed better photosynthetic capacity, such as higher Pn, ΦPSII, and other photosynthetic parameters. RBFR caused an increase in lettuce leaf area and energy use efficiency, but a decrease in leaf thickness and Pn of the single leaf. Moreover, tipburn injury was observed under RBFR. Therefore, these results demonstrate that RBG and RBO can be considered optimal combinations of light wavelengths for lettuce growth in a PFAL in this experiment, although plant growth can also be improved by using RBFR.

Free access

Zhong-Hua Bian, Rui-Feng Cheng, Qi-Chang Yang, Jun Wang, and Chungui Lu

Light-emitting diodes (LEDs) have shown great potential for plant growth and development, with higher luminous efficiency and more flexible and feasible spectral control compared with other artificial lighting. The combined effects of red and blue (RB) LED with or without green (G) LED light and white LED light on lettuce (Lactuca sativa L.) growth and physiology, including nitrate content, chlorophyll fluorescence, and phytochemical concentration before harvest, were investigated. Continuous light exposure at preharvest can effectively reduce nitrate accumulation and increase phytochemical concentrations in lettuce plants. Nitrate accumulation is dependent on the spectral composition and duration of treatment: lettuce exposed to continuous RB (with or without G) LED light with a photosynthetic photon flux (PPF) of 200 µmol·m−2·s−1 exhibited a remarkable decrease in nitrate content at 24 hour compared with white LED light treatment at the same PPF. In addition, RB LED light (R:B = 4:1) was more effective than white LED light at the same PPF in facilitating lettuce growth. Moreover, continuous LED light for 24 hours significantly enhanced free-radical scavenging activity and increased phenolic compound concentrations. We suggest that 24 hours continuous RB LED with G light exposure can be used to decrease nitrate content and enhance lettuce quality.

Full access

Soohyun Kang, Yating Zhang, Yuqi Zhang, Jie Zou, Qichang Yang, and Tao Li

Ultraviolet-A (UV-A) is the main component of UV radiation in nature. However, its role on plant growth, to a large extent, remains unknown. In this study, tomato (Solanum lycopersicum ‘Beijing Cherry Tomato’) seedlings were cultivated in an controlled environment in which UV-A radiation was provided by UV-A fluorescent lamps (λmax = 369 nm) with a fluence rate of 2.28 W·m−2. The photoperiod of UV-A radiation was 0, 4, 8, and 16 hours, which corresponds to control, UV-A4, UV-A8, and UV-A16 treatments, respectively. The photosynthetic photon flux density (PPFD) was 220 μmol·m−2·s−1, which was provided by light-emitting diodes (LEDs) with a blue/red light ratio of 1:9, the photoperiod of PPFD was 16 hours. We showed that supplementing 8 and 16 hours of UV-A to visible radiation (400–700 nm) stimulated plant biomass production by 29% and 33%, respectively, compared with that of control. This resulted mainly from larger leaves (i.e., 22% and 31% in 8 and 16 hours UV-A, respectively), which facilitated light capture. Supplemental UV-A also enhanced photosynthetic capacity, as indicated by greater net photosynthesis rates in response to CO2 under saturating PPFD. Furthermore, the greatest stomatal conductance (g S) value was observed in UV-A16, followed by UV-A8, which correlated with the greater stomatal density in the corresponding treatments. Moreover, supplemental UV-A did not induce any stress, as the maximum quantum efficiency of photosynthetic system II (PSII) (F v/F m) remained ≈0.82 in all treatments. Similarly, chlorophyll content and leaf mass area (LMA) were also unaffected by UV-A radiation. Taken together, we conclude that supplementing reasonable levels of UV-A to visible radiation stimulates growth of indoor cultivated tomato seedlings.

Open access

Jing Huang, Ya-liang Xu, Fa-min Duan, Xu Du, Qi-chang Yang, and Yin-jian Zheng

The aim of the present study was to evaluate the effects of alternating red (660 nm) and blue (460 nm) light on the growth and nutritional quality of two-leaf-color pak choi (Brassica campestris L. ssp. chinensis var. communis). Four light treatments (supplemental alternating red and blue light with intervals of 0, 1, 2, and 4 hours, with a monochromatic light intensity of 100 μmol·m−2·s−1 and a cumulative lighting time of 16 hours per day) were conducted in a greenhouse under identical ambient light conditions (90 to 120 μmol·m−2·s−1 at 12:00 am) for 10 days before green- and red-leaf pak choi were harvested. The results showed that the two-leaf-color pak choi receiving alternating red and blue light exhibited more compact canopies and wider leaves than those under the control treatment, which was attributed to the shade avoidance syndrome of plants. The present study indicated that the biomass of green-leaf pak choi was much higher than that of red-leaf pak choi, but the nutritional quality of green-leaf pak choi was lower than that of red-leaf pak choi, and seemingly indicating that the regulation of metabolism for pak choi was species specific under light exposure. The trends of both biomass and the soluble sugar content were highest under the 1-hour treatment. The contents of chlorophyll a and total chlorophyll in both cultivars (green- and red-leaf pak choi) were significantly increased compared with control, without significant differences among the 1-, 2-, and 4-hour treatments, whereas chlorophyll b exhibited no significant difference in any treatment. Alternating red- and blue-light treatment significantly affected the carotenoid content, but different trends in green- and red-leaf pak choi were observed, with the highest contents being detected under the 1-hour and 4-hour treatments, respectively. With increasing time intervals, the highest soluble protein contents in two-leaf-color pak choi were observed in the 4-hour treatment, whereas nitrate contents were significantly decreased in the 4-hour treatment. Compared with 0 hours, the contents of vitamin C, phenolic compounds, flavonoids, and anthocyanins in two-leaf-color pak choi were significantly increased, but no significant differences were observed in vitamin C, phenolic compounds, and flavonoids among the 1-, 2-, and 4-hour treatments, similar to what was found for the anthocyanin content of green-leaf pak choi. However, the content of anthocyanins in red-leaf pak choi gradually increased with increasing time intervals, with the highest content being found in the 4-hour treatment. Supplemental alternating red and blue light slightly increased the antioxidant capacity [1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging rate and antioxidant power], but no significant differences were observed after 1, 2, and 4 hours of treatment. Taken together, treatment with an interval of 1 hour was the most effective for increasing the biomass of pak choi in this study, but treatment with a 4-hour interval should be considered to enhance the accumulation of health-promoting compounds.