Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Qiaosheng Guo x
Clear All Modify Search
Authors: , , and

Soil microbes and enzymes play important roles in plant growth and metabolism. However, for Glechoma longituba (Nakai) Kupr., an important crop with edible and medicinal uses in China, their effects are not well elucidated. To explore their impacts on plant morphology and bioactive compounds, the plant samples and rhizosphere soil of five different G. longituba populations were collected and investigated in this study. After high-throughput sequencing combined with data analyses, high microbial diversity and richness in the rhizosphere soil of each G. longituba population were observed, and the variations on bacterial and fungal community compositions among these soil samples were also proved. The activities of urease, neutral phosphatase, sucrase, protease, and polyphenol oxidase were significantly different among the rhizosphere soils from different G. longituba populations. Among the major microbial communities and soil enzymes we studied, the genera of Tomentella, Sebacina, Fusarium, Nitrospira, and the activity of soil sucrase were remarkably correlative with both the morphological indices and the contents of bioactive compounds of G. longituba by redundancy analysis. These findings would help guide the scientific plantation of G. longituba to promote its medicinal quality.

Open Access

The stolon is the main asexual reproductive organ of the medicinal plant Tulipa edulis and has special morphology. In the greenhouse experiment presented herein, the dynamic changes in carbohydrates and related enzymes, proteins, and endogenous hormones of stolons during T. edulis stolon formation were investigated. The results showed that the content of total soluble sugar, sucrose, reducing sugar, fructose, and starch were all significantly enhanced in the middle period when stolon emerged and maintained at relatively high levels until the later period of stolon formation, while protein content decreased during stolon formation. The activities of amylase (AMY), sucrose phosphate synthase (SPS), and sucrose synthase (SS) peaked in the initial period and were negatively correlated with soluble sugars. However, adenosine diphosphoglucose pyrophosphorylase (AGPase) activity increased as stolon formation progressed, and the changes in soluble starch synthase (SSS), granule-bound starch synthase (GBSS) activities presented a single peak, reaching their maximums in the middle period. AGPase, SSS, and GBSS activities were all positively related to starch content. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) verified the changes in SS and SSS activities via the expression levels of the SS, SSSI, and SSSII genes. The gibberellin (GA) and zeatin riboside (ZR) content attained their maximum in the initial period of stolon formation. Indole-3-acetic acid (IAA) and abscisic acid (ABA) remained at high levels during the initial and middle period and decreased significantly during the later period of stolon formation, inversely to the ratio of ABA:IAA. Analysis of the physiological changes in T. edulis stolon indicated that the accumulation of soluble sugars and starch via various enzymes, a high level of IAA and a low ABA to IAA ratio mainly contributed to stolon development of T. edulis. This paper explored carbohydrate levels and endogenous hormones profiles during stolon formation, which provided the theory basis for further regulating stolon growth of T. edulis.

Free access

The spicas of Prunella vulgaris are widely used in the medical, beverage, and ornamental fields. Temperature and photoperiod are the two main ecological factors that determine the transformation of many plants from vegetative growth to reproductive growth. To explore the response of P. vulgaris flowering to temperature and photoperiod induction, we adopted vernalization long-day, vernalization short-day, nonvernalization long-day, and nonvernalization short-day treatments. The results showed that the morphology (total number of leaves, number of branches, number of leaves per branch, and branch length) of the vernalization treatment groups was significantly different from that of other nonvernalization groups, and the photosynthetic pigments, net photosynthetic rate, water use efficiency, stomatal conductance, intercellular CO2 concentration, and transpiration rate increased in the vernalization treatment group. However, the gibberellin 3 (GA3), indole-3-acetic acid and zeatin riboside (ZR) contents were significantly increased under the short-day treatments groups, and the results were the same for the expression of endogenous hormone synthesis genes, except for abscisic acid (ABA). The flowering-related genes soc1, elf3, svp, ga20ox, and cry1 were highly expressed under the vernalization short-day. Therefore, the induction of vernalization is more conducive to the increase in the photosynthetic rate. Temperature and photoperiod synergistically induced the synthesis and accumulation of starch, sugar, amino acids, and protein and affected the content of endogenous hormones and the expression of genes involved in their synthesis. GA3 and ZR had thresholds for their regulation of the flowering process in P. vulgaris, and high concentrations of ABA promoted flowering. Temperature and photoperiod coordinate the expression of the flowering-related genes soc1, elf3, svp, ga20ox, and cry1, thereby affecting the flowering process in P. vulgaris.

Open Access