Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Qiang Zhou x
Clear All Modify Search

This study aimed to understand the effects of meteorological factors on the ‘Fuji’ apple quality in the Circum-Bohai and Loess Plateau apple production regions of China and to guide apple production based on local climate. Fruit samples of the ‘Fuji’ apple and meteorological data were investigated from 132 commercial ‘Fuji’ apple orchards covering 44 counties in the two aforementioned production regions (22 counties per region). The partial least-squares regression (PLSR) method was first used to screen major meteorological factors that greatly affected fruit quality; these were subsequently used to establish the regression equation of fruit quality attributes and major meteorological factors. Linear programming was used to estimate optimum meteorological factors for good apple quality. The results showed that in the Circum-Bohai production region, many meteorological factors (total annual precipitation, total precipitation from April to October, lowest temperature from April to October, sunshine percentage from April to October) were significantly higher than those in the Loess Plateau production region; however, the temperature difference between day and night from April to October was significantly smaller than that in the Loess Plateau production region. The soluble solids content and skin color area of apples from the Loess Plateau production region were significantly greater than those from the Circum-Bohai production region. The same fruit quality factor of ‘Fuji’ apple was affected by different meteorological factors in the two production regions. The monthly mean temperature and monthly highest temperature from April to October of the Circum-Bohai production region had relatively larger positive effect weights on fruit quality, whereas the total annual precipitation, monthly mean relative humidity from April to October, and total precipitation from April to October of the Loess Plateau production region had relatively larger positive effect weights on fruit quality. The major influencing meteorological factors of the fruit soluble solids content were total precipitation from April to October (X 7), mean annual temperature (X 1), and the monthly highest temperature from April to October (X 5) in the Circum-Bohai production region; however, it included the monthly mean temperature difference between day and night from April to October (X 6), total annual precipitation (X 2), and total precipitation from April to October (X 7) in the Loess Plateau production region. In the Circum-Bohai production region, the optimum meteorological factors for ‘Fuji’ fruit quality of vigorous apple orchards were the mean annual temperature (13.4 °C), total annual precipitation (981 mm), monthly mean temperature (16.8 to 22.4 °C), lowest temperature (11.9 °C), highest temperature (19.5 to 26.8 °C), temperature difference between day and night (12.3 °C), total precipitation (336–793 mm), relative humidity (55.7% to 70.7%), and sunshine percentage (42.3% to 46.1%) during the growing period (April–October). In the Loess Plateau production region, the optimum meteorological factors for ‘Fuji’ fruit quality of vigorous apple orchards were the mean annual temperature (5.5 to 11.6 °C), total annual precipitation (714 mm), monthly mean temperature (13.3 to 19.9 °C), lowest temperature (7.9 to 9.3 °C), highest temperature (19.6 to 27.3 °C), temperature difference between day and night (7.1 to 12.4 °C), total precipitation (338–511 mm), relative humidity (56.1% to 82.4%), and sunshine percentage (37.3% to 55.9%) during the growing period (April–October). The restrictive factors for high-quality ‘Fuji’ apples of the Circum-Bohai production region were the smaller monthly mean temperature difference between day and night, higher monthly mean lowest temperature, and larger monthly mean relative humidity during the growing period; however, those of the Loess Plateau production region were drought or less precipitation from November to March, lower monthly mean temperature, and higher monthly mean highest temperature during the growing period.

Open Access

Adequate greenhouse environmental management is very important for improving resource use efficiency and increasing vegetable yield. The objective of this study was to explore suitable climate and cultivation management for cucumber to achieve high yield and build optimal yield models in semi-closed greenhouses. A fruit cucumber cultivar Deltastar was grown over 4 years in greenhouse and weekly data of yields (mean, highest and lowest) and environmental variables, including total radiation, air temperature, relative humidity, and carbon dioxide (CO2) concentration were collected. Regression analyses were applied to develop the relationships and build best regression models of yields with environmental variables using the first 2 years of data. Data collected in years 3 and 4 were used for model validation. Results showed that total radiation, nutrient, temperature, CO2 concentration, and average nighttime relative humidity had significant correlations with cucumber yields. The best regression models fit the mean, lowest, and highest yields very well with R 2 values of 0.67, 0.66, and 0.64, respectively. Total radiation and air temperature had the most significant contributions to the variations of the yields. Our results of this study provide useful information for improving greenhouse climate management and yield forecast in semi-closed greenhouses.

Free access

Changes in leaf length, width, area, weight, chlorophyll and carotenoids contents, and photosynthetic variables with different leaf positions were investigated in fruit cucumber. Plants were grown on rockwool slabs in an environmentally controlled greenhouse and irrigated by drip fertigation. Leaf measurements were conducted from the first to the 15th leaf (the oldest to the youngest). The results showed that fresh weight per unit leaf area decreased from the second to the 15th leaf. Changes in cucumber leaf length, width, and area followed quadratic models from the first to the 15th leaf. The quadratic models of leaf length, width, and area fit the measurements well, with R 2 values of 0.925, 0.951, and 0.955, respectively. The leaf chlorophyll a and b and carotenoid contents increased from the oldest leaf (first leaf) to the youngest leaf and decreased after reaching the highest values. Changes in the net photosynthetic rate (Pn) also followed the quadratic model from the first to the 15th leaf, with R 2 values of 0.975. The leaf transpiration rate (Tr) increased from the first to the 14th leaf. Our results revealed patterns in leaf growth and photosynthetic changes at different leaf positions in fruit cucumber and improved our understanding of the growth and development of fruit cucumber in the greenhouse production system.

Open Access

To study and model changes in the development of pak choi (Brassica rapa ssp. chinensis Makino), three pak choi cultivars—Xinxiaqing No. 5 (Xinxiaqing 5), Haiqing, and Huawang—were grown in a modern greenhouse. Four structural parameters, including leaf length, leaf width, and plant height and width, were measured regularly every 3 days. The results showed that the changes in plant height and width, and leaf length and width of the three cultivars followed sigmoidal trends. Logistical regression models {Y = K/[1 + (KL 0)/L 0 × exp(–r × t)]; Y = K/[1 + (KL 0)/L 0 × exp(−r × rad)]} of the leaf length and width accumulated with growth days and with accumulated radiation fit the actual data very well, with the correlation coefficient R 2 all greater than 0.98. The R 2 values of the plant width accumulation models were all greater than 0.93, whereas the R 2 values of the plant height regression models were not robust. In this study, the regression models of changes in plant height and width, and leaf length and width of pak choi were used to study the changes of morphological characteristics and analyze the change rules of pak choi growth and development.

Open Access