Search Results
Based on seedling properties and stage of growth for cucurbitaceous and solanaceous vegetables, separate robots are being marketed for each. Full automatic grafting robots are used for solanaceous vegetables like tomato and egg-plant employing ordinary splice method by making a diagonal cut through the hypocotyl of both the scion and the rootstock. However, cutting one piece of cotyledon diagonally from the rootstock does grafting of cucurbitaceous vegetables like cucumber, melon, and pumpkin. This method had the advantage of easy recovery and high survival rate of seedlings. Only semi-automatic robots are marketed for this kind of plants because a fixed cotyledon orientation is required for grafting operation. Both the scion and the rootstock are loaded manually to their corresponding feeding devices. To replace the manual loading operation, this study proposed a neural network based automatic seedling loading system. The system automatically estimates the quality and determines the cotyledon orientation of seedling for guiding the loading device of the grafting robot. As a first step toward solution, we report the development of a model for seedling quality estimation and orientation detection using image processing and neural network techniques. The model has a learning ability and can judge seedlings according to the training patterns. A seedling leaves feature extraction model of 10 characteristics was proposed and a three-layer neural network was constructed. The experimental results indicate that the seedling leaves orientation was accurately detected with an average error of 3 degrees within 360 degrees of freedom and the machine vision system could properly classify seedlings into three classes (A-good, B-fair, and C-bad) according to the training pattern.
Flowering time, growth, and opium gum yield from five seed sources (T, L, B1, B2, B3) of opium poppy (Papaver somniferum L.) collected from different latitudes in three Southeast Asian countries were determined. Plants were grown in six growth chambers at a 11-, 12-, 13-, 14-, 15-, or 16-hour photoperiod with a 12-hour, 25/20 °C thermoperiod. Flower initiation was observed under a dissecting microscope (40×) to determine if time to floral initiation was identical for all accessions across a wide range of photoperiods. The main capsule was lanced for opium gum at 10, 13, and 16 days after flowering (DAF). Plants were harvested at 21 DAF for plant height, leaf area, and organ dry-weight determinations. In a 16-hour photoperiod, flower initiation was observed 10 days after emergence (DAE) for B1 vs. 8 DAE for the other four accessions. Flowering time was affected most by photoperiod in B1 and least in B2. Flowering times for B3, L, and T were similar across the range of photoperiods. B2, B3, and L had the highest gum yields per capsule; even though B1 had the greatest total plant biomass, it produced the lowest gum yield. There was no difference among accessions in the average ratio of gum: individual capsule volume. For the ratio of gum: capsule dry weight, only the difference between T and B1 was significant. Capsule size did affect these ratios slightly. T had a larger gum: volume ratio for larger capsules, and B3 had a smaller gum: dry-weight ratio for heavier capsules. Flowering time varied up to 40%, capsule dry weight up to 41%, and opium gum yield up to 71% for the five accessions across all treatments. No relationship was found between flowering time and the latitude where the seed sources were collected. Time to flower initiation could not be used to predict time to anthesis because floral development rates varied significantly among accessions and photoperiods. Capsule volume and dry weight were useful in estimating gum yield.
Solenostemon scutellarioides (coleus) were grown in drainage lysimeters in concurrent experiments to evaluate effects of irrigation quantity and frequency on growth responses, leaf gas exchange, and nitrate leaching. Lysimeters in Expt. 1 were irrigated either with 13 mm daily or 13 mm every other day. Daily irrigation increased mean leachate and doubled nitrate leached compared with every other day (22.9 kg·ha−1 N versus 10.8 kg·ha−1 N, respectively). In Expt. 2, lysimeters were irrigated every 2 days with 13 mm or every 3 days with 18 mm such that total depth applied was equivalent. Irrigation frequency had no effect on irrigation quantity or nitrate leached. In these experiments, assimilation rates, stomatal conductance, and transpiration rates were influenced by day since irrigation with values lower on days without irrigation. However, neither irrigation quantity nor frequency affected final shoot dry weight, root dry weight, height or growth indices (P > 0.05).