Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Ping He x
Clear All Modify Search

Zelkova sinica Schneid. is a popular landscape plant in China because of its wide adaptation, strong disease resistance, large crown, and beautiful fall color. Immature embryos from Z. sinica seeds were cultured on woody plant medium (WPM) supplemented with 4.5 μM 6-Benzylaminopurine (BA) and 5.4 μM α-naphthaleneacetic acid (NAA) to induce callus, and 60% of immature embryos formed callus. The cream-white, friable, nodular callus with proembryogenic structures was then cultured on WPM containing 5.4 μM NAA in combination with 9.0 or 11.2 μM BA to regenerate shoots; approximately five shoots per explant were induced on 70% callus. Shoots were rooted on WPM containing 0.5 μM indole-3-butyric acid (IBA), on which 62.3% shoots developed roots with an average of 4.2 roots per shoot at 4 weeks. The regenerated plantlets were acclimatized and transplanted into the field. This protocol could be used for mass production for field plantation, genetic improvement, and germplasm exchange of Z. sinica.

Free access

Accurate estimation of the nutrient requirements of Chinese onion is essential to increase its nutrient utilization efficiency and yield. In this study, the yield and nutrient uptake data were collected from major Chinese onion growing regions during 2001 to 2018, and the relationship between Chinese onion yield and nutrient uptake was evaluated using the Quantitative Evaluation of the Fertility of Tropical Soils (QUEFTS) model. The QUEFTS model predicted the linear-parabolic platform curve of the balanced nutrient uptake of Chinese onion and estimated the demand of nitrogen (N), phosphorus (P), and potassium (K) for the potential target yields ranging from 40 t/ha to 120 t/ha. The nutrients required for the target yield increased linearly before reaching 60% to 70% of the potential yield. Nutrient requirements for producing 1 t of Chinese onion were 1.91 kg N–0.28 kg P–1.71 kg K. The corresponding nutrient internal efficiency (IE, yield per unit nutrient uptake) was 524.6 kg/kg, 3585.7 kg/kg, and 584.3 kg/kg for N, P and K, respectively. Subsequently, a nutrition decision-making software, Nutrient Expert (NE), for the Chinese onion was developed based on the improved QUEFTS model. Field verification studies for NE fertilizer recommendation were conducted in multiple Chinese onion growing plots for 2 consecutive years. Results showed that the QUEFTS model can be used to accurately estimate the nutrient requirements for Chinese onion within a defined range of target yield.

Open Access

Aspergillus niger is a common pathogenic fungus causing postharvest rot of fruit and vegetable, whereas the knowledge on virulence factors is very limited. Superoxide dismutase [SOD (EC] is an important metal enzyme in fungal defense against oxidative damage. Thus, we try to study whether Cu/Zn-SOD is a virulence factor in A. niger. Cu/Zn-SOD encoding gene sodC was deleted in A. niger [MA70.15 (wild type)] by homologous recombination. The deletion of sodC led to decreased SOD activity in A. niger, suggesting that sodC did contribute to full enzyme activity. ΔsodC strain showed normal mycelia growth and sporulation compared with wild type. However, sodC deletion markedly increased the cell’s sensitivity to intracellular superoxide anion generator menadione. Besides, spore germination under menadione and H2O2 stresses were significantly retarded in ΔsodC mutant compared with wild type. Further results showed that sodC deletion induced higher superoxide anion production and higher content of H2O2 and malondialdehyde (MDA) compared with wild type, supporting the role of SOD in metabolism of reactive oxygen species (ROS). Furthermore, ΔsodC mutant had a reduced virulence on chinese white pear (Pyrus bretschneideri) as lesion development by ΔsodC was significantly less than wild type. The determination of superoxide anion, H2O2, and MDA in A. niger-infected pear showed that chinese white pear infected with ΔsodC accumulated less superoxide anion, H2O2, and MDA compared with that of wild type A. niger, implying that ΔsodC induced an attenuated response in chinese white pear during fruit–pathogen interaction. Our results indicate that sodC gene contributes to the full virulence of A. niger during infection on fruit. Aspergillus niger is one of the most common species found in fungal communities. It is an important fermentation industrial strain and is also known to cause the most severe symptoms in fruit during long-term storage (). Meanwhile, plants activate their signaling pathways to trigger defense responses to limit pathogen expansion. One of the earliest host responses after pathogen attack is oxidative burst, during which large quantities of ROS are generated by different host enzyme systems, such as glucose oxidase (). ROS such as singlet oxygen, superoxide anion, hydroxyl (OH), and H2O2 are released to hinder the advance of pathogens (). ROS can react with and damage cellular molecules, such as DNA, protein, and lipids, which will limit fungal propagation in the host plant ().

Free access

Ferric chelate reductase (FRO) is a critical enzyme for iron absorption in strategy I plants, reducing Fe3+ to Fe2+. To identify FRO family genes in the local Citrus junos cultivar Ziyang Xiangcheng and to reveal their expression model, the citrus (Citrus sp.) genome was searched for homologies of the published sequence CjFRO1. Five FROs were found, including CjFRO1; these were named CjFRO2, CjFRO3, CjFRO4, and CjFRO5, respectively, and cloned via reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) PCR. The deduced amino acid sequences of five CjFROs contained flavin adenine dinucleotide (FAD)-binding motifs, nicotinamide adenine dinucleotide (NAD)-binding motifs, and 6–10 transmembrane domains, with isoelectric points between 6.73 and 9.46, and molecular weights between 67.2 and 79.9 kD. CjFRO1 and CjFRO2 were predominantly found in the aboveground parts of C. junos, with CjFRO1 highly expressed in leaves, and CjFRO2 largely expressed in stems and leaves. CjFRO3 was less expressed in roots, stems, and leaves. CjFRO4 and CjFRO5 were predominately found in roots. Under iron-deficient conditions, CjFRO4 was significantly and specifically increased in the roots of C. junos, whereas CjFRO1 was upregulated in the roots and leaves.

Free access