Search Results
Florida tomato growers generate about $600 million of annual farm gate sales. The Florida Vegetable and Agronomic Crop Water Quality/Quantity Best Management Practices Manual was adopted by rule in the Florida Administrative Code in 2006 and describes cultural practices available to tomato growers that have the potential to improve water quality. By definition, BMPs are specific cultural practices that are proven to optimize yield while minimizing pollution. BMPs must be technically feasible, economically viable, socially acceptable, and based on sound science. The BMP manual for vegetables endorses UF-IFAS recommendations, including those for fertilization and irrigation. Current statewide N fertilizer recommendations for tomato provide for a base rate of 224 kg/ha plus provisions for supplemental fertilizer applications 1) after a leaching rain, 2) under extended harvest season, and 3) when plant nutrient levels (leaf or petiole) fall below the sufficiency range. An on-farm project in seven commercial fields was conducted in 2004 under cool and dry growing conditions, to compare grower practices (ranging from 264 to 468 kg/ha of N) to the recommended rate. Early and total extra-large yields tended to be higher with growers' rate than with the recommended rate, but these differences were significant only in one trial. The first-year results illustrated the need for recommendations to be tested for several years and to provide flexibility to account for the reality of local growing conditions. Working one-on-one with commercial growers provided an opportunity to focus on each farm`s educational needs and to identify specific improvements in nutrient and irrigation management.
About 10,000 ha of staked tomato are grown each year in the winter–spring season in southwest Florida. Tomatoes are produced with transplants, raised beds, polyethylene mulch, drip or seepage irrigation, and intensive fertilization. With the development of nutrient best management practices (BMPs) for vegetable crops and increased competition among water users, N recommendations must ensure economical yields, but still minimize the environmental impact of tomato production. The current University of Florida–IFAS (UF–IFAS) N fertilization rate of 224 kg·ha-1 (with supplemental fertilizer applications under specified conditions) may require adjustment based on soil type and irrigation system. Because growers should be involved in the development and implementation of BMPs, this project established partnerships with southwest Florida tomato growers. Studies evaluated the effects of N application rates on yield, plant growth, petiole N sap, pests, and diseases. Nine on-farm trials were conducted during the dry winter 2004–05 season. Treatments consisted of N fertilizer rates ranging from 224 to 448 kg·ha-1, with each trial including at least the UF–IFAS rate and the traditional rate. Although total yields were comparable among N rates, there were differences in size category. Nitrogen rates had little effect on tomato biomass 30 and 60 days after transplanting. Changes in petiole sap NO3-N and K concentrations were different between seepage and drip irrigation, but usually above the sufficiency threshold. It is important to consider the type of irrigation when managing tomato and determining optimum N fertilizer rates.