Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Peter P. Ling x
Clear All Modify Search
Free access

Yasuo Tatsumi, Alley E. Watada and Peter P. Ling

Water jet technology to slice carrots or salt treatment prior to slicing was studied to minimize the unappealing whitish tissue noted with carrot sticks. The water jet was a fine stream with 378,950 kPa force. Salt treatment consisted of immersing carrots in NaCl solution ranging from 0.0 to 1.0 M concentration for 3 to 20 hours. Subsequently, the carrots were sliced, stored at 5 C, and analyzed. Carrot sticks sliced with the water jet had a greater amount of white tissue than those sliced with a knife. Scanning electron microscopy showed that the water jet caused grooves on the cut surface, which exposed many layers of cells to dehydrate rapidly. The grooves probably can be minimized by increasing the speed of slicing. Salt treatments of 0.5 to 1.0 M concentration caused 3 to 10 percent weight loss when treated for 20 hours at 5 C or 3 hours at 20 C. Carrot sticks with increased weight loss had less whitish tissue and had an appearance of freshly cut sticks; however, the textural quality decreased.

Free access

Aparna Gazula*, Matthew D. Kleinhenz, Joseph C. Scheerens, Peter P. Ling and John G. Streeter

In addition to their physiological and metabolic roles, anthocyanin (Antho) levels in lettuce contribute to visual and nutritional value-based assessments of crop quality. Although 7 genes are now thought to help regulate Antho synthesis, deposition and/or degradation in lettuce, the genetic and abiotic controls of Antho levels remain less well characterized in lettuce than other plants. Previous greenhouse studies demonstrated that Antho levels in diverse lettuce varieties are a function of temperature and lighting regimen. Here, three strongly related Lolla Rossa-type varieties (`Lotto', `Valeria', and `Impuls') varying in the number of genes controlling intensity of anthocyanins were subjected to differential temperature conditions in growth chambers to better discern the independent and interactive effects of temperature (T) and variety (V) on Antho levels. Fifteen day-old seedlings were placed into one of three chambers maintained at 20 °C day/night (D/N), 30 °C/20 °C D/N or 30 °C D/N. Antho levels were measured in leaf tissue collected 30 d after transplanting. The entire experiment was replicated twice. Although significant, the T x V interaction resulted from differences in the magnitude, not direction, of the change in Antho concentrations among varieties with changes in T. This suggests that T was a main driver of Antho levels in this study. Regardless of V, Antho concentrations were highest, moderate and lowest after growth at 20 °C D/N, 30 °C/20 °C D/N and 30 °C D/N, respectively. Likewise, regardless of T, Antho levels followed the pattern `Impuls' (three genes) > `Valeria' (two genes) > `Lotto' (one gene). Correlations among instrumented and human eye-based evaluations of color are also being tested in samples from both studies.

Free access

Aparna Gazula*, Matthew D. Kleinhenz, Joseph C. Scheerens, Peter P. Ling and John G. Streeter

Anthocyanins (Antho) are the source of red color in plants and the intensity of redness is an important quality parameter in red leaf lettuce. Despite the importance of Antho in leaf lettuce, little information is available regarding the effects of major production-related factors, such as planting date, on their levels. To address this issue, field studies were conducted in 2002 and 2003 in which Antho levels were measured in nine lettuce varieties planted in early and late summer (ES and LS, respectively) using a RCB design. Leaf tissue was sampled 30 d after transplanting. Data for three strongly related Lolla Rossa-type varieties (`Lotto', `Valeria', `Impuls') are reported here. The planting date × variety interaction was significant; however, Antho concentrations were higher following planting in LS than ES, regardless of variety. Planting date effects were more pronounced in 2002, when differences in average daily temperature between ES and LS plantings tended to be larger. Regardless of planting date and year, Antho levels followed the pattern `Impuls' (three genes) > `Valeria' (two genes) > `Lotto' (one gene). Correlations between human visual and two types of instrumented assessments of color are being tested in samples from the same study.

Free access

Aparna Gazula, Matthew D. Kleinhenz, Joseph C. Scheerens and Peter P. Ling

Leaf samples collected from field plots of nine lettuce cultivars established in the early (ES) and late (LS) summer of 2002 and 2003 in Celeryville, Ohio, were subjected to spectrophotometric measurement of anthocyanin concentrations or color analysis based on colorimeter and spectroradiometer readings and human panelist ratings. Interactions among year (Y), transplanting date (TD), and cultivar (C) main effects for anthocyanin concentration were significant as a result of shifts in response magnitude but not direction. Anthocyanin levels were higher after LS than ES transplanting regardless of Y and C. The effects of TD were pronounced in 2002, when differences in average daily temperature between ES and LS transplantings tended to be larger. Also, regardless of Y and TD, anthocyanin levels followed the pattern ‘Impuls’ > ‘OOC 1441’ > ‘Valeria’ > ‘OOC1426’ > ‘Lotto’ > ‘SVR 9634’ > ‘OOC 1434’ = ‘OOC 1310’ > ‘Cireo’. Treatment-based color differences were also evident in colorimeter and spectroradiometer readings. Also, panelists differentiated samples grown in 2003 based on red color intensity. Correlations between analytic and instrumented and human panelist-based measures suggest instrumented assessments of red coloration may serve as proxies for direct measures of anthocyanin levels or human panelist ratings, particularly if the aim is to establish color differences between major experimental groups and assign quantitative, repeatable values to red color intensity.

Full access

Natalie R. Bumgarner, Mark A. Bennett, Peter P. Ling, Robert W. Mullen and Matthew D. Kleinhenz

Low and high tunnels and root-zone heating systems are proven tools in horticultural production. However, impacts of their separate and combined application on crop yield, composition, and microclimates are underreported. We addressed these gaps in the literature by exposing lettuce (Lactuca sativa) to four microclimates established with low and high tunnels and root-zone heating during the spring and fall of 2 years in Wooster, OH. Red-leaved romaine lettuce cultivars Outredgeous and Flagship were direct-seeded into raised beds in both outdoor and high-tunnel settings in early October and late March and harvested multiple times over 4 weeks. Half of all plots in each setting were underlain by electric heating cables, and half were covered with 0.8-mil, clear, vented, low tunnels. A growing medium consisting of peat moss, compost, soil, and red clover (Trifolium pratense) hay was used, and all plots were overhead-irrigated. Soil and air temperatures were monitored throughout the experiments, which were repeated four times (2 seasons/year × 2 years). Here, we report primarily on treatment effects on crop yield and related variables. Root- and shoot-zone conditions and cultivar significantly affected leaf biomass in both settings (outdoor, high tunnel), while population was more often affected in the outdoor experiments. Microclimate main effects were more prevalent than cultivar effects or interactions. Leaf yield was greater in low-tunnel-covered and bottom-heated plots than in uncovered and unheated plots. We take these data as further evidence of the potential to alter lettuce yield through root- and shoot-zone microclimate modification, particularly in regions prone to dynamic seasonal and within-season temperature and light conditions. The data also suggest that the relative performance of low and high tunnels in the production of short-statured, quick-cycling crops during fall and spring be more thoroughly evaluated.

Full access

Natalie R. Bumgarner, Mark A. Bennett, Peter P. Ling, Robert W. Mullen and Matthew D. Kleinhenz

Low and high tunnels and root-zone heating systems are proven tools in horticultural production. However, impacts of their individual and combined application on crop yield, composition, and microclimates are under-reported. We set out to enhance the record of management strategy effects on abiotic environmental conditions and cropping variables in open field and high-tunnel settings. In each setting, raised bed plots were subsurface heated (underlain by electric heating cables), aerial covered (0.8-mil, clear, vented, low tunnels), subsurface heated and aerial covered, or unheated and uncovered (control). The study was repeated four times in spring and fall seasons across 3 years in Wooster, OH. Red-leaved romaine lettuce (Lactuca sativa ‘Outredgeous’ and ‘Flagship’) was direct seeded in all plots in early October and late March and harvested after ≈4 weeks. Subsurface and aerial temperatures were monitored throughout the experiments. Here, we report primarily on treatment effects on crop microclimate conditions, including temperature and light, and related cropping variables. Subsurface and aerial temperatures varied consistently with plot microenvironment management. Relative to control plots, variability in shoot- and root-zone temperatures generally increased and decreased, respectively, with the addition of low tunnels and electric heating cables, regardless of setting. Still, the relative influence of aerial and soil temperature on crop biomass appeared to differ by setting; aerial temperature correlated most strongly with yield in the high tunnel, while the combination of aerial and root-zone temperature correlated most strongly with yield in the field. Growing degree day accumulation was least in control plots. And, the highest thermal energy to plant biomass conversion efficiency was recorded in the high tunnel. Comparing study-wide and historical climatic data collected in Wooster and other locations in the region suggests that results reported here may hold over a larger area and longer time frame in Wooster, OH.

Restricted access

Adam F. Newby, James E. Altland, Daniel K. Struve, Claudio C. Pasian, Peter P. Ling, Pablo S. Jourdan, J. Raymond Kessler and Mark Carpenter

Greenhouse growers must use water more efficiently. One way to achieve this goal is to monitor substrate moisture content to decrease leaching. A systems approach to irrigation management would include knowledge of substrate matric potentials and air-filled pore space (AS) in addition to substrate moisture content. To study the relationship between substrate moisture and plant growth, annual vinca (Catharanthus roseus L.) was subject to a 2 × 2 factorial combination of two irrigation treatments and two substrates with differing moisture characteristic curves (MCCs). A gravimetric on-demand irrigation system was used to return substrate moisture content to matric potentials of −2 or −10 kPa at each irrigation via injected drippers inserted into each container. Moisture characteristic curves were used to determine gravimetric water content (GWC), volumetric water content (VWC), and AS at target substrate matric potential values for a potting mix consisting of sphagnum moss and perlite and a potting mix consisting of sphagnum moss, pine bark, perlite, and vermiculite. At each irrigation event, irrigation automatically shut off when the substrate-specific weight of the potted plants associated with the target matric potential was reached. Irrigation was triggered when the associated weight for a given treatment dropped 10% from the target weight. VWC and AS differed between substrates at similar matric potential values. Irrigating substrates to −2 kPa increased the irrigation volume applied, evapotranspiration, plant size, leaf area, shoot and root dry weight, and flower number per plant relative to irrigating to −10 kPa. Fafard 3B had less AS than Sunshine LB2 at target matric potential values. Plants grown in Fafard 3B had greater leaf area, shoot dry weight, and root dry weight. Leachate fraction ranged from 0.05 to 0.08 and was similar across all treatment combinations. Using data from an MCC in conjunction with gravimetric monitoring of the container–substrate–plant system allowed AS to be determined in real time based on the current weight of the substrate. Closely managing substrate matric potential and AS in addition to substrate water content can reduce irrigation and leachate volume while maintaining plant quality and reducing the environmental impacts of greenhouse crop production.