Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Peter Nkedi-Kizza x
Clear All Modify Search
Full access

Davie M. Kadyampakeni, Kelly T. Morgan, Arnold W. Schumann and Peter Nkedi-Kizza

Citrus (Citrus sp.) root length density (RLD) can help in understanding and predicting nutrient and water uptake dynamics. A study was conducted at two sites in Florida to investigate root and water distribution patterns among different irrigation and fertigation systems. The results over the 2 years showed that RLD was highest in the 0- to 15-cm soil depth and decreased with depth for all treatments at both sites. About 64% to 82% of the fibrous roots (<1 mm diameter) were concentrated in the irrigated zones of drip- and microsprinkler-irrigated trees and 18% to 36% were found in the nonirrigated zones at the Spodosol site (SS). At the Entisol site (ES), the RLD (<0.5 mm diameter) in the 0- to 15-cm depth soil for intensive microsprinkler or drip irrigation was 3- to 4-fold (nonirrigated zone) and 4- to 7-fold (irrigated zone) greater at the 0- to 15-cm soil depth than that for conventional irrigation system. The trees at SS were symptomatic for Huanglongbing (HLB; Candidatus Liberibacter asiaticus) in the second year, while those at ES were asymptomatic throughout the study. This might have limited the density and extent of root distribution at SS. The water contents remained either close to or slightly above the field capacity. The results showed higher RLD for intensive irrigation and fertigation practices in irrigated zones compared with conventional grower applications suggesting greater water and nutrient uptake potential for the former.