Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Peter Goldsbrough x
Clear All Modify Search

Fruit development in apple cultivars varying in their ultimate fruit size was analyzed using cytology, flow cytometry (FCM), and semi-quantitative RT-PCR. Fruit size variation across cultivars was largely explained by variation in cell number. The cell division phase lasted for less than 30 days in all varieties, less than previously believed. A distinct overlap between the cell division and cell expansion phases was present. Analysis of the relative cell production rate (rCPR) showed a major peak about 10 days after full bloom (DAFB) after which it declined. Comparison of the rCPR across varieties suggested distinct patterns of cell production with `Gala' having a low but sustained rCPR, `Pixy Crunch' a short but high rCPR, and `Golden Delicious' having a high and sustained rCPR. FCM analysis also showed similar patterns with a peak in the proportion of dividing cells about 10 DAFB followed by a decline. To further understand regulation of cell number, four cell cycle related genes were cloned from `Gala'. Cyclin Dependent Kinase B (CDK B) and Cyclin B were found to be highly cell division phase specific in their expression. Analysis of gene expression by semi-quantitative RT-PCR indicated peak expression of these two genes at 5-10 DAFB, consistent with the peaks in rCPR and proportion of dividing cells. Comparison of gene expression across the varieties showed higher peak expression of the above genes in the larger-fruited `Golden Delicious' than in the smaller-fruited `Gala.' This study provides novel insight into the regulation of fruit development in apple and also suggests a role for the cell cycle genes in fruit size regulation.

Free access

RAPD markers were used to examine genetic similarity in cacao. DNA from 30 cacao cultivars amplified using 15 arbitrary oligonucleotide primers, produced a total of 112 fragments, of which 88% were polymorphic. A phenogram was developed which illustrates the genetic relationships among the cacao cultivars representing the four major geographic groups of cacao (Criollo, Trinitario, Forastero Lower Amazonian, and Forastero Upper Amazonian). The phenogram indicated a general separation of the four groups into three clusters. Criollos and Trinitarios (supposedly hybrids between Forastero and Criollos types) appeared in a single cluster. Lower Amazonian cultivars (mainly selections made in Bahia, Brazil) appeared in a separate cluster. The third cluster consisted of the Upper Amazonian cultivars, which were originally collected from the region believed to be the center of origin of this crop. This cluster displayed the furthest genetic distance from the others. Crosses between Upper Amazon germplasm and local selections have shown heterosis in clonal crosses, which has been exploited in all genetic improvement programs for cacao. We propose that genetic distances based on RAPD markers can be potentially used as a criterion to select parents capable of producing superior hybrids and populations. Genetic relationships can also be useful to define germplasm collections and conservation strategies. Studies are underway to compare phenograms derived from RAPD markers and ribosomal RNA gene polymorphisms.

Free access

The size of the haploid genome of Theobroma cacao L. (cacao), estimated using laser flow cytometry, was 0.43 pg. An improved DNA extraction procedure was developed based on isolation of a crude nuclei preparation from leaf tissue that effectively eliminated contamination of the DNA by polysaccharides and produced DNA that was, on average, longer than 50 kb. DNA yields ranged from 2 to 10 μg·g-1 fresh weight of leaf tissue. DNA blot hybridization experiments with a flax (Linum usitatissimum L.) ribosomal DNA probe revealed restriction fragment length polymorphisms between three cacao genotypes. Differences between the DNA of these genotypes were also detected by polymerase chain reaction amplification of polymorphic DNA fragments, using random oligonucleotide primers.

Free access

Genetic similarities among eight Theobroma and two Herrania species, including 29 genotypes of T. cacao, were estimated by rDNA polymorphism. A phenogram based on these genetic similarities significantly separated two clusters: one cluster included all Herrania and Theobroma species, except T. cacao, while the second contained 28 of 29 T. cacao genotypes. There was no clear distinction between Herrania and Theobroma species. Separation of 29 T. cacao genotypes, representing all races and various origins, had no congruency with the conventional classification into three horticultural races: Criollo, Forastero, and Trinitario. Genetic similarities in T. cacao, estimated with RAPD markers, indicated continuous variation among the generally similar but heterogeneous genotypes. The wild genotypes formed an outgroup distinct from the cultivated genotypes, a distinction supported by the rDNA data. The phenograms constructed from RAPD and rDNA data were not similar within the wild and cultivated cacao subsets.

Free access

Molecular markers were used to assess genetic diversity in basil (Ocimum L. spp., Lamiaceae). Using randomly amplified polymorphic DNA (RAPD) analysis, 11 primers generated 98 polymorphic bands, ranging from 300 to 2,000 base pairs, that discriminated among 37 accessions across nine Ocimum spp. Means of genetic similarities within Ocimum spp. showed that the domesticated species, O. minimum L. (0.887), O. basilicum L. (0.769), and O. ×citriodorum Vis. (0.711) had highest similarity indices within species, while the nondomesticated, O. americanum L. (0.580), O. gratissimum L. (0.408), and O. kilimandscharicum Guerke (0.559) showed the lowest similarity. RAPD results indicated that O. minimum should not be considered a distinct species but rather a variety of O. basilicum. Consistent clusters among all but one of the O. ×citriodorum spp., all containing citral as the major constituent, were identified using bootstrap analysis. RAPD analysis was useful in discriminating among Ocimum spp., although within species resolution will require a higher number of polymorphic bands.

Free access

The codominant PCR marker AL07-SCAR closely linked to the Vf gene for scab resistance was used to genotype seedlings in three apple populations in which each parent (`GoldRush', `Enterprise', `Pristine', and CQR10T17) was resistant to apple scab. The marker was used to predict the genotype at the Vf locus. Each parent was heterozygous. In two populations (CQR10T17 × `GoldRush' and `Pristine' × `GoldRush') seedlings segregated 1:2:1 for fragments associated with VfVf:Vfvf:vfvf as predicted by Mendelian segregation. However, in another population (`GoldRush' × `Enterprise') the ratio was 1.5:1:1.5, suggesting some type of selection against heterozygotes. Fruiting seedlings were rated for the presence of fruit scab. No scab was observed on seedlings homozygous for the PCR marker linked to Vf , a small amount of scab was observed on one heterozygous seedling out of 35, and 22 of 26 seedlings that were homozygous recessive, had fruit scab.

Free access