Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Pedro Perdomo* x
  • All content x
Clear All Modify Search
Free access

Pedro Perdomo* and Kenneth Karamichael

Industry statistics indicate that there are approximately 150,000 people working in the green industry in New Jersey. About 50% to 60% are Hispanic. Nationally, 43% of Hispanics are not proficient in English. The education of Hispanic workers in their own language increases job skills, improves efficiency, and on the job safety. Spanish language horticultural courses were offered to educate members of the landscape community in New Jersey. Spanish language courses included general turf management, pruning of trees and shrubs, plant identification, hazardous tree identification, and basic pesticide training. The landscape classes began with a slide presentation that covered basic concepts, materials, and techniques that the landscaper should be aware of. Whenever possible, the courses were taught in a bilingual (Spanish/English) format to help participants familiarize themselves with English terms. Along with the in-class training, outdoor demonstrations were incorporated into all courses and participants were given the opportunity to practice what they had learned in the classroom. Over one hundred fifty employees registered for the classes between Jan. and Dec. 2003. Certificates of attendance were issued to all participants and were considered as a positive component of the courses. About 24% of the participants attended more than one of the courses and 100% would recommend the courses to their friends and co-workers. Seventy five percent of landscape business owners stated that they would consider sending other employees to future courses. Fifty percent of the participants were interested in attending courses that covered technical information, such as those offered to the English speaking landscape community.

Free access

Raul I. Cabrera and Pedro Perdomo

The performance of modern greenhouse-grown roses under intensive nutrient and water management practices questions their traditional classification as a salt-sensitive species, and emphasizes the need to reassess their salinity tolerance. Container-grown `Bridal Pink' roses (on R. manetti rootstock) in a peat moss-based growing medium were irrigated, using moderate leaching fractions (25% targeted, 37.5% actual), with complete nutrient solutions supplemented with NaCl at 0, 5, and 10 mm. These salt concentrations affected the electrical conductivity (EC) and Cl concentrations measured in the leachates, but had no significant effects on flower yield and quality over four growth and flowering flushes (§29 weeks). Cumulative yields over this period increased an average of §13% per leachate EC unit. Thereafter, the applied NaCl concentrations were increased 3-fold to 0, 15, and 30 mm and the plants continued to be evaluated for another four flowering flushes. No significant differences in cut-flower yield and quality were observed among salt treatments despite further increases in leachate EC and Na and Cl concentrations. Symptoms of salt injury were visually observed during the last three flowering cycles, and most heavily on the oldest foliage of plants receiving the highest salt concentration (30 mm), but not on the foliage of harvested shoots. The concentration of most nutrients in leaf tissue was not significantly affected by any of the treatments over the course of the experiment. Leaf Na concentrations were not affected by NaCl applications, averaging 42 mg·kg-1 across treatments. Conversely, leaf Cl concentrations increased significantly and cumulatively over time with salt additions, and ranged from 1.0 to 17.5 g·kg-1 (0.1 to 1.75%). Regression analyses revealed that average relative dry weight yields increased with leaf Cl concentrations up to 4.0 g·kg-1 (0.40%), but were depressed at higher concentrations.

Free access

Raul I. Cabrera and Pedro Perdomo

Hydrophilic polymer tubes (2.5 mm OD, 1.4 mm ID, 10-cm length, 0.1-mm pore diameter) attached to PVC hose were used to extract solution from soilless media at container capacity and analyzed for pH, EC, NO3-N and NH4-N. Media chemical properties were also analyzed by the Saturated Media Extract (SME) and Pour-Through (PT) methods. Extraction and analyses were conducted in peat: vermiculite (PV) and peat: perlite (PP) media irrigated for 1 week with Hoagland solution at 0.25, 0.5, 1, 2 and 4x. A 10-mL syringe was used as the vacuum source (48.1 ± 0.5 kPa) for the solution samplers (SS), yielding ≈2–5 mL of solution over a 3-min period. Simple correlation coefficients for EC, NO3-N and NH4-N between SS and SME and PT were high (>0.99). When measured by PT, these chemical properties were similar to SS (within 1% to 6%), whereas SME values were much lower than SS (12% to 15% and 35% to 38% in PV and PP media, respectively). Correlation coefficients for pH were lower than in other chemical properties, particularly in the PV medium. With an estimated life of ≈6 months in soil, SS are excellent monitoring tools for mineral nutrition research and horticultural crop production.

Free access

Raul I. Cabrera and Pedro Perdomo

Herbaceous perennials are the hottest item in the ornamental industry, yet relatively little is known about the most appropriate management and cultural practices for many of these species. The response of selected perennials to controlled-release fertilizer (CRF) rates was evaluated in this study. Liners of Coreopsis `Early Sunrise' and `Zagreb', Astilbe `Bridal veil', Hemerocallis `Stelladoro', Phlox `Franz Shubert', and Rudbeckia `Goldstrum' were transplanted to 5.7-L pots filled with a 2 peat: 1 perlite (v/v) medium amended with dolomite and Micromax (2 and 0.6 kg·m-3, respectively). Plants were topdressed with Osmocote 18N-2.7P-10K at rates of 0, 1.8, 3.6, 5.3, 7.1 (industry standard) and 8.9 kg·m-3, and grown over a 3-month period. Plant biomass and quality ratings (including chlorophyll levels) followed an asymptotic behavior with CRF applications for Coreosis `Early Sunrise' and Astilbe `Bridal veil', leveling at ≈1.8 kg·m-3. The rest of the species showed increases in plant growth and quality with CRF rates of 1.8-3.6 kg·m-3, followed by sharp, and significant, reductions at higher CRF rates. Observations of optimum growth and quality at CRF rates 1/2 to 3/4 below commercial recommendations were partially attributed to the use a peat medium, with relatively higher nutrient holding characteristics in relation to the more common pine bark mixes. This observation was confirmed the following season, where plants grown in a 4 pine bark: 1 sand medium (v/v) required higher CRF rates to have similar growth and quality responses to those grown in a 4 peat: 1 bark: 1 sand medium (v/v).

Free access

Pedro Perdomo, James A. Murphy, and Gerald A. Berkowitz

Understanding the factors influencing the performance of Kentucky bluegrass (Poa pratensis L.) cultivars under summer stress is necessary for developing criteria for identifying resistant germplasm. The objectives of this study were to evaluate two Kentucky bluegrass cultivars for leaf water (ψl) and osmotic potential (ψπ), stomatal resistance (Rs), leaf: air temperature differential (ΔT) and determine the relationship of these parameters to drought and heat tolerance. Stress-resistant (`Midnight') and susceptible (`Nugget') cultivars were evaluated in a field study during 1993 and 1994 under moisture-limiting conditions. Leaf water potential for `Nugget' was higher than for `Midnight' in 1993 and similar in 1994. `Midnight' had lower ψπ than `Nugget' during the evaluation period in 1994. `Midnight' maintained more open stomata (lower Rs) and lower ΔT than `Nugget' at the end of the dry down period when `Nugget' was showing visual signs of stress. `Midnight' and `Nugget' had similar root weight at the 0- to 45-cm depth zone in 1994. Lower basal osmotic potential (i.e., higher solute concentration) may be the physiological mechanism allowing larger stomatal aperture in `Midnight'. Greater transpirational cooling in `Midnight' relative to `Nugget' was correlated with higher turf quality for `Midnight'.