Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Paula Craig x
Clear All Modify Search
Authors: and

Wet Earth (WE) is a recycled paper product that may substitute for peat moss as a growth substrate. WE is available at various pH levels and may be formulated using: 1) paper production byproducts (WES), or 2) recycled corrugated cardboard (WEC). Use of WE by commercial growers would reduce demand for both landfill space and for slowly renewable resources such as peat and pine bark. Experiment objectives included: analyzing plant performance of azaleas (Rhododendron obtusum `Hino Crimson') in WE-based growth substrates at pH 3.4 and pH 6.6 and in peat-based growth substrates (Trial pH), 2) analyzing plant performance of WES, WEC, and peat moss-based growth substrates (Trial SC), and 3) determining changes, if any, in substrate physical properties from planting to harvest. Shadehouse experiments were conducted in summer of 1996. Ratios of pine bark to WE tested were 100% pine bark, 1:3, 1:1, 3: l, and 100% WE by volume. Plant heights, widths, and visual quality ratings were obtained monthly throughout the 16-week experiment. Leaf, shoot, and root dry weights and leaf nitrogen concentration were determined at harvest. Changes in volume, bulk density, porosity, and air space were also measured. Plants performed poorly in WES, pH 3.4, with mortality exceeding 90%. Peat and WEC yielded similar (and best) results. Optimum plant performance for all substrates occurred in 1: 3 and 1: 1 (WE: pine bark) mixes. At concentrations over 50%, increases in bulk density and reductions in volume and percent air space in WE substrates were severe enough to negatively impact root growth and plant quality.

Free access
Authors: and

Wet Earth (WE) is a recycled paper product being tested as a potential plant growth substrate. It is composed of 80% recycled paper, 18% diatomaceous earth, 1% CaO, and 1% humic acid by volume. Use of WE by commercial growers would reduce demand for both landfill space and for slowly renewable resources such as peat and pine bark. Evidence also suggests that WE reduces nitrate runoff. Objectives included: determining effects of WE on plant growth, examining effects of WE on NO3 and NH4 runoff from container plant production, and determining the chemical and physical properties that characterize WE as a growth substrate. Ratios of pine bark to WE tested were 100% pine bark, 1:3, 1:1, 3:1, and 100% WE by volume. Fertilizer treatments included: 100% of the recommended rate of controlled release fertilizer (CRF), 50% CRF plus 50% liquid fertilizer (LF) and 100% LF. Plant heights, widths, and visual quality ratings were obtained monthly throughout the 16-week experiment. Leaf, shoot and root dry weights were determined at harvest. Nitrogen content of roots, shoots, and substrates were determined at planting and harvest, while NO3 and NH4 content of leachate was determined at each irrigation. All substrates were analyzed at planting and harvest for pH, soluble salts, exchangeable cations, and CEC. Changes in volume, bulk density, porosity, and air space were also measured. Plant size and quality varied significantly between substrate mixes. Mortality was significantly higher in mixes containing 75% and 100% WE. Changes in volume, bulk density, and percent air space were also significant and inversely related to WE concentration.

Free access