Search Results

You are looking at 1 - 10 of 46 items for

  • Author or Editor: Paul V. Nelson x
  • All content x
Clear All Modify Search
Free access

JinSheng Huang and Paul V. Nelson

It is desirable to have a large root mass and compact shoot in the final stage of plug seedling production. Marigold `Discovery Orange' was grown for six weeks from sowing in a hydroponic system. Hoagland's all nitrate solution was used at 0.25X for the first three weeks and 0.5X for the final three weeks. P was applied continuously in the control and was eliminated for the first one or three weeks in the two stress treatments. Weekly mot and shoot dry weights indicated: a.) P stress caused an increase in root/shoot ratio with roots larger than in the control plants and b.) restoration of P after a P stress resulted in a rapid shift of root/shoot ratio back to the control level with final root and shoot weights less than in the control plants. A continuous marginal P stress or a stress near the end of seedling production is suggested. Tomato `Marglobe' was grown for five weeks and impatiens `Super Elfin White' for six weeks in a 3 sphagnum peat moss: 1 perlite substrate in 288 cell plug trays. Fertilizer was applied at every third watering at a zero leaching percentage. The control nutrient ratio (mM) was 5.4 NH4+ NO3: 0.5 PO4: 1.6 K while the low P treatments contained 0.15, 0.1, and 0.05 mM PO4 throughout the experiment. The root/shoot dry weight ratios increased in the low P treatments. Tomato plants at 0.15 and 0.1 mM P and impatiens plants at 0.15 mM P had larger roots than the control plants. A continuous stress at 0.15 mM PO4 appears promising.

Free access

JiWeon Lee and Paul V. Nelson

Tomato `Marglobe' seed were sown on germination paper in enclosed plastic dishes in a growth room Ammonium was more toxic when applied as the single salt, ammonium sulfate, than when applied as part of a complete Hoagland solution. The lowest toxic ammonium levels were for the single salt 1.5 mM and for the complete solution 4.5 mM. Symptoms included reduced length of primary and particularly lateral roots, reduced numbers of root hairs, and chlorosis, distortion, and slower development of cotyledons. Tomato `Marglobe' seedlings were also grown in 288 cell plug trays in a substrate of 3 sphagnum peat moss and 1 perlite containing no N, P, or K but amended with dolomitic limestone to pH 6.0 They were fertilized every third watering with 4 mM NH4 + NO3, 0.4 mM PO4, and 1.2 mM K from 15 to 28 days after sowing and at double this concentration from 29 to 42 days. A zero leaching percentage was practiced. Ammoniacal-N comprised 25, 50, or 75% of total N. There were no effects of ammonium on root or shoot weights, height or appearance of plants through this period. Plant growth was limited throughout this period by N stress in accordance. with commercial practice. After 42 days N stress was alleviated by again doubling the nutrient solution concentration and applying it with every watering. Ammonium toxicity developed with symptoms of shorter plant height, general chlorosis of lower leaves, and necrosis of the base of lower leaves.

Free access

Jong-Myung Choi and Paul V. Nelson

Mineralization of N from nonviable cells of Brevibacterium lactofermentum (Okumura et al.) mixed into soilless substrate in elution columns occurred largely during the first 5 weeks with a peak between 2 and 3 weeks. Over a 12-week period, 73% of the total N was recovered in the eluent. To prolong the period of N release to meet the requirements of a slow-release fertilizer, the bacterium was bonded to kraft lignin, a polyphenolic substance highly resistant to degradation. To retard mineralization further, the bacterium-lignin mixture was reacted with formaldehyde to form amino cross-links within and between protein chains. Bonding to lignin was undesirable because N release occurred during the same period as from the bacteria unbound to lignin and the total amount of N recovered was reduced to only 42%. Cross-linking with formaldehyde was less desirable since N was released mainly during the first 4 weeks with a peak during the first elution (0 time) and the total amount of N released was even lower than for the bacterium-lignin mixture. Additions of urea to the latter reaction did not satisfactorily improve subsequent N mineralization. In a second set of treatments lignin was withheld and the bacterium was reacted with weights of formaldehyde (a.i.) equivalent to 0.1%, 0.5%, 1.0%, 5.0%, and 10.0% of the dry weight of bacterium. Formaldehyde quantities ≤1.0% either had no effect or lowered the mineralization of N without altering time of release. Five percent and 10% formaldehyde successfully reduced release of N during the first 4 weeks and increased it thereafter. The best rate was 5%. In this treatment N was released from week 2 through the end of the test (12 weeks). Peak release occurred at 6 weeks. This resulting N source, while not a stand alone product, does have a slow-release property that could lend itself to use in combination with other slow-release N sources.

Free access

Jong-Myung Choi and Paul V. Nelson

An actinomycete designated Streptomyces cn1 with a high proteolytic activity and capacity to degrade feather keratin was isolated and its effectiveness for altering feathers to yield a slow-release N fertilizer was evaluated. The pattern of N release in column elution tests from feathers ground to a particle size ≤1 mm, but otherwise unaltered, was characterized by a first period of release from weeks 2 through 5 with a high peak at week 3 and a second period of release from 14 to 20 weeks. The release of N during the first period was 10.5% and during the second period it was 7.3% for a total of only 17.8% of the N contained in these feathers. Grinding feathers to a finer particle size ≤0.5 mm caused increases in N release during the two periods to 14.7% and 15.8% N, respectively, for a total of 30.5% and second period N release began 5 weeks earlier at week 9. Microbial hydrolysis with Streptomyces cn1 for 1 though 5 days resulted in an adverse reduction in total N released, due in part to drying of feathers after hydrolysis. Hydrolysis of feathers for 7 days resulted in 42.6% of total N released over 20 weeks with 77.0% of this released during weeks 6 through 20. The second period of release began at week 8. Hydrolysis of feathers for 9 days was best for purposes of a slow-release fertilizer. Forty five percent of total N was released over 20 weeks with 89.3% of this released during the second period that began in week 7. Root substrate pH was increased in all treatments where feathers were applied. This would require a reduction in the rate of limestone incorporated into a commercial substrate when feather N is used. Pepsin digestibility and ninhydrin tests provided some insight into the N release mechanism but did not effectively predict N release from the feather products.

Free access

Jong-Myung Choi and Paul V. Nelson

The structure of feather keratin protein was modified in attempts to develop a slow-release N fertilizer of 12 weeks duration or longer by steam hydrolysis to break disulfide bonds, enzymatic hydrolysis with Bacillus licheniformis (Weigmann) to break polypeptide bonds, and steam hydrolysis (autoclaving) to hasten mineralization followed by cross-linking of the protein by a formaldehyde reaction to control the increased rate of mineralization. Release of N in potting substrate within elution columns from ground, but otherwise untreated, raw feathers occurred mainly during the first 5 weeks with a much smaller release occurring from weeks 8 to 12. Steam hydrolysis resulted in an increase of N during the first 5 weeks and a decrease during weeks 8 to 11. Cumulative N release over 11 weeks increased from 12% in raw feathers to 52% for feathers steam hydrolyzed for 90 minutes. This favored an immediately available fertilizer but not a slow-release fertilizer. Microbial hydrolysis with B. licheniformis resulted in a modest reduction of N release during the first 5 weeks and a small increase during weeks 8 to 11. Both shifts, while not desirable for an immediately available fertilizer, enhanced the slow-release fertilizer potential of feathers but not sufficiently to result in a useful product. Steam hydrolyzed feathers cross-linked with quantities of formaldehyde equal to 5% and 10% of the feather weight released less N during the first 5 weeks, more during weeks 6 and 7, and less during weeks 9 to 12 compared to raw feathers. The first two shifts were favorable for a slow-release fertilizer while the third was not.

Free access

Kimberly A. Williams and Paul V. Nelson

Seven organic materials including 1) the bacterium Brevibacterium lactofermentum (Okumura et al.) in a nonviable state, 2) a mixture of two bacteria, Bacillus licheniformis (Weigmann) and Bacillus subtilis (Ehrenberg), plus the fungus Aspergillus niger (van Tieghem) in a nonviable state, 3) an activated microbial sludge from waste-water treatment, 4) sludge from a poultry manure methane generator, 5) unsteamed bonemeal, 6) aged pine needles, and 7) poultry feathers were evaluated to determine their pattern and term of N release and the possibility of using them as an integral part of root media releasing N at a steady, low rate over 10 to 12 weeks for production of Dendranthema × grandiflorum (Ramat.) Kitamura `Sunny Mandalay'. These were compared to the inorganic slow-release fertilizer micro Osmocote (17N-3.9P-10.8K) and a weekly liquid fertilizer control. All organic sources released N most rapidly during the first 2 weeks, followed by a decline, which ended at 6 to 7 weeks. Brevibacterium lactofermentum, bonemeal, and micro Osmocote treatments resulted in about equal growth, which was similar to growth of a weekly liquid fertilizer control for 9 weeks in the first and for 12 weeks in the second experiment. The period of N release could not be extended through increased application rate of source due to the high initial release rate. It was not possible to lower source application rates to achieve an effective, low soil solution concentration due to the large variation in release rate over time. Efficiency of N use varied among plants grown in media treated with various microorganismal sources and was highest in those treated with B. lactofermentum. Nitrogen release from ground poultry feathers was inadequate, and additions of the viable hydrolyzing bacterium B. licheniformis to feathers failed to increase soil solution N levels. Attempts to retard mineralization of B. lactofermentum by cross-linking proteins contained within the bacterium by means of heat treatment at 116C vs. 82C failed. While anaerobic poultry manure sludge proved to be an inefficient source of N, it provided large amounts of P. Organic sources released primarily ammoniacal N, which raised the medium pH by as much as one unit, necessitating the use of less limestone in the medium formulation.

Free access

Kimberly A. Williams and Paul V. Nelson

Nutrient solution with a molar ratio of 10 N: 1 P: 3 K was applied in scheduled intervals at rates of 0.5, 1, 4, or 20 mm N (NO3 + NH4) to Dendranthema ×grandiflorum (Ramat.) Kitamura `Sunny Mandalay' plants seven (7/day) or 14 times/day (14/day). These plants were compared to a 20 mm N control in which nutrient solution was applied when the soil moisture tension reached 30 kPa. Plants with 7/day had significant quadratic relationships for height, width, and dry weight, with the lowest responses at the low nutrient concentration. With 14/day, height and dry weight did not differ, although width did increase linearly with nutrient solution concentration. However, linear regression slopes for all three variables were much lower with 1Vday than with 7/day. At midcrop in both experiments, significant regression curves indicated that the lower concentrations of nutrient solution resulted in lower tissue N and K levels; however, slopes of the linear regressions were lower with 14/day than with 7/day. With 7/day, the water content (percentage) of plants in the schedule-fertilized treatments was higher in plants receiving higher nutrient concentrations, as indicated by the significant linear and quadratic regression curves. With 14/day, the water content was linearly related to solution nutrient concentration, but with a lower slope than with 7/day. These three trends indicate that steady-state nutrition was more closely achieved in a commercial-style substrate with 14/day applications of nutrient solution. These results suggest that plant growth that meets commercial expectations can be achieved at lower soil solution nutrient concentrations than currently applied.

Free access

Kimberly A. Williams and Paul V. Nelson

Most soilless container root media have limited ability to retain nutrients. Zeolites are minerals of substantial cation exchange capacity that can be precharged with K, and possibly PO4, and used as a component of soilless media as a slow-release nutrient source. A zeolite clinoptilolite (Cp) was charged with K and PO4 at two concentrations and combined at 20% of the mix with sphagnum peat (60%) and perlite (20%) to evaluate its use as the sole source of these nutrients during production of Dendranthema ×grandiflorum (Ramat.) Kitamura `Sunny Mandalay.' Phosphate, K, Na, and pH were determined on unaltered bulk root medium solutions collected over the course of production, and foliar analyses were determined on tissue collected at the middle and end of the crop. All leachate was collected and analyzed to allow for the creation of K and PO4 budgets. Plants that relied on precharged Cp at the low and high rates to meet their K needs and received a N/P/-K fertilizer had similar dry mass and tissue K concentrations as the control plants that received a complete fertilizer. The use of precharged Cp at the low rate reduced K losses through leaching to 23% of the amount lost from control plants receiving water-soluble fertilizer (WSF). Plants that relied on precharged Cp for their PO4 had a lower dry mass and tissue P levels than those of the complete control treatment. However, PO4 concentrations in the root medium solution were above acceptable levels during the first month of production and should be considered when developing a fertilizer application strategy using Cp precharged with PO4.

Free access

Kimberly A. Williams and Paul V. Nelson

Soilless container medium components such as peatmoss and perlite have almost no capacity to retain PO4-P, and preplant amendments of triple superphosphate (TSP) are readily leached. Al amendments were tested to reduce P losses from these media. Al2(SO4)3 solutions at rates of 320 and 960 μg Al/cc were applied to a 70 peat: 30 perlite medium and dried at 70C. Adsorption isotherms were created at 25C for the Al2(SO4)3-amended media and an unamended control using solutions of Ca(H2PO4)2 at concentrations of P ranging from 0 to 500 μg·ml–1. Isotherms showed that P retention increased as Al concentration increased. In a greenhouse study, Dendranthema ×grandiflorum `Sunny Mandalay' was grown in these media with 100 g P/m3 from TSP incorporated into the mixes before planting. PO4-P, soluble Al, and pH were determined on unaltered medium solutions collected throughout the cropping cycle and foliar analyses were determined on tissue collected at mid- and end-crop. The highest rate of Al was excessive and resulted in low pH and soluble Al levels in the medium solution early and in the cropping cycle, which were detrimental to plant growth. When Al was applied at 320 μg/cc, soluble Al levels in medium solution were not significantly higher than in the unamended control, PO4-P leached from TSP was reduced, and sufficient PO4-P was released throughout the cropping cycle to result in optimal plant growth.

Free access

Tammy L. Everett and Paul V. Nelson

Five common sources of perlite used in the North American horticultural industry were tested for their release of fluoride during five successive teachings with pH 5.2 sodium phosphate buffer (1 cc perlite/ml buffer). Soluble fluoride in the first leachate ranged from 0.05 to 0.8 mg/l and in the fifth leachate from 0.01 to 0.18 mg/l. Lilium Asiatic hybrids `Pixie Grange' and `Sunray', Chlorophytum comosum (Thumb.) Jacques `Variegatum', and Gibasis pellucida (Martens & Gal.) D. Hunt `Bridal Veil' were. grown in sphagnum peat moss plus perlite substrates ranging up to 50% perlite and at substrate pH levels from 4.6 to 7.0. No fluoride toxicity occurred in these crops in any treatments. The precaution against the use of perlite in substrates used for growing fluoride sensitive crops needs to be reconsidered.