Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Paul Deram x
Clear All Modify Search

Current greenhouse supplemental lighting technology uses broad-spectrum high-pressure sodium lamps (HPS) that, despite being an excellent luminous source, are not the most efficient light source for plant production. Specific light frequencies in the 400- to 700-nm range have been shown to affect photosynthesis more directly than other wavelengths (especially in the red and blue ranges). Light-emitting diodes (LEDs) could diminish lighting costs as a result of their high efficiency, lower operating temperatures, and wavelength specificity. LEDs can be selected to target the wavelengths used by plants, enabling growers to customize the light produced, to enable maximum plant production and limit wavelengths that do not significantly impact plant growth. In our experiment, hydroponically grown tomato plants (Solanum lycopersicum L.) were grown using a full factorial design with three light intensities (high: 135 μmol·m−2·s−1, medium: 115 μmol·m−2·s−1, and low: 100 μmol·m−2·s−1) at three red (661 nm) to blue (449 nm) ratio levels (5:1, 10:1, and 19:1). Secondary treatments for comparison were 100% HPS, 100% red LED light supplied from above the plant, 100% red LED light supplied below the plant, a 50%:50% LED:HPS mixture, and a control (no supplemental lighting). Both runs of the experiment lasted 120 days during the Summer–Fall 2011 and the Winter–Spring 2011–12. The highest biomass production (excluding fruit) occurred with the 19:1 ratio (red to blue) with increasing intensity resulting in more growth, whereas a higher fruit production was obtained using the 5:1 ratio. The highest marketable fruit production (fruit over 90 g) was obtained with the 50%:50% LED:HPS followed by 5:1 high and 19:1 high. Consistently the 5:1 high performed well in every category. LEDs have been shown to be superior in fruit production over HPS alone, and LEDs can improve tomato fruit production when mixed with HPS. LEDs provide a promising mechanism to enhance greenhouse artificial lighting systems.

Free access