Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Paul Cancalon x
  • All content x
Clear All Modify Search
Free access

Chunxian Chen, Paul Cancalon, Carl Haun, and Fred Gmitter Jr.

Furanocoumarins are organic chemical components in grapefruit (Citrus paradisi) juice that have been shown to induce potentially deleterious drug interactions. In this study we measured seven furanocoumarins (FCs) [bergamottin, 6′,7′-dihydroxybergamottin (6,7-DHB), paradisin C, bergaptol, isoimperatorin, 5′,8′-dimethylallyloxypsoralen (5,8-DMP), and epoxybergamottin (EBM)] in fruit of three grapefruit cultivars [Foster (Fos), Low Acid Foster (LAF), and Hudson (Hud)], one pummelo (C. maxima) cultivar [Hirado Buntan (HBP)], 17 randomly selected hybrids from HBP× Hud, and 31 other triploid hybrids. Bergamotton, 6,7-DHB, and paradisin C were not detected or extremely low in HBP (0.00, 0.11, and 0.00 mg·L−1) and LAF (0.40, 3.83, and 0.00 mg·L−1) compared with Hud (13.03. 9.58, and 6.11 mg·L−1) and Fos (6.48, 14.38, and 6.11 mg·L−1). In these hybrids, 6,7-DHB, bergamottin, and paradisin C obviously cosegregated in an approximate rate of 1:1. The three FCs in eight hybrids were not detected or extremely low, like HBP, the maternal parent; those in the other nine were as high as or higher than Hud, the paternal parent. The same segregation tendency was also observed in these triploid hybrids. Based on all the cultivars and hybrids, strong correlations existed among 6,7-DHB, bergamottin, and paradisin C (coefficient up to 0.909). Such strong correlations may reflect their metabolic links in the bergamottin pathway. The 1:1 cosegregation and strong correlation among the three FCs suggested that the trait of FCs is likely controlled by one single enzymatic or regulatory gene in the pathway. The FC profiles and inheritance may lead to a genomic and breeding solution to the grapefruit FC–drug interaction issue. Selection of FC-low or FC-free seedless grapefruit cultivars is underway.