Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Paul C. St. Amand x
Clear All Modify Search

The effects of leaf age, guttation, stomata and hydathode characteristics, and wounding on the symptom development of gummy stem blight [Didymella bryoniae (Auersw.) Rehm] of cucumber (Cucumis sativus L.) were studied to develop a useful germplasm screening method. Older cucumber leaves were more susceptible than younger leaves in field, greenhouse, and detached-leaf tests. Compared to seedlings with true leaves, seedlings at the cotyledon stage were less susceptible, had a smaller variance for ratings, and were more likely to escape infection. Stomata density and hydathode counts were not correlated with field ratings; but, stomata length on older leaves was highly correlated with susceptibility y. In greenhouse and field tests, susceptibility y increased as guttation increased and actively guttating plants were more susceptible than nonguttating plants. Phylloplane moisture and/or nutrition were more important in the infection process than was stomata] opening. Although important, guttation was not necessary for infection. Dawn inoculation of field or greenhouse tests increased leaf symptoms compared with dusk inoculation. The increase was likely due to the free water and nutrients provided by guttation. Genotype ranks and ratings for detached-leaf tests were not correlated with field results. A useful method, highly correlated (r = 0.82 to 0.96) with field ratings. for screening germplasm in the greenhouse was developed.

Free access

Heritability of resistance to gummy stem blight (Didymella bryoniae (Auersw.) Rehm.) was measured in two diverse cucumber (Cucumis sativus L.) populations [North Carolina elite slicer 1 (NCES1) and North Carolina wide base pickle (NCWBP)]. Heritability was estimated using parent-offspring regression and half-sib family analysis in North Carolina field tests during 1991 and 1992. NCES1 is a slicing cucumber population with a narrow genetic base, and NCWBP is a pickling cucumber population with a wide genetic base. Heritability estimates were low to moderate ranging from 0.12 to 0.49 for the gummy stem blight leaf rating and from -0.03 to 0.12 for stem rating. Estimates of gain from selection were at least two times larger for selection based on half-sib families than for mass selection for all traits in both populations. Approximately three to five cycles of selection would be required to improve the NCES1 population mean for gummy stem blight leaf resistance by one rating scale unit, and three to four cycles of selection would be required to improve the NCWBP population mean for gummy stem blight leaf resistance by one rating scale unit, based on half-sib family selection. One rating scale unit decrease is equivalent to an 11% reduction in susceptibility. Gain would be slower if selecting for stem, or leaf and stem resistance. A moderate amount of additive genetic variation exists in both populations for gummy stem blight leaf resistance, but estimates for additive genetic variation for stem resistance indicate little to no additive genetic variation. Development of populations specifically for greater initial resistance and greater additive variance than found in these populations should aid in selection for resistance.

Free access

Leaf and stem resistance to gummy stem blight [Didymella bryoniae (Auersw.) Rehm.] in five resistant by susceptible crosses of cucumber (Cucumis sativus L.) was investigated using generation means analysis. No single gene of major effect controls either leaf or stem resistance to gummy stem blight in these five crosses. The mean number of effective factors controlling leaf resistance in the cross `Slice' × `Wis. SMR 18' was estimated to be at least five. Estimates of broad- and narrow-sense heritabilities indicated that environmental effects were larger than genetic effects. In general, additive variance was the larger component of genetic variance. Epistasis was significant in most crosses, and dominance was present in several crosses. Additive gene effects contributed more to resistance than to susceptibility in contrast with dominance gene effects. Reciprocal differences for leaf rating were detected in the crosses M 17 × `Wis. SMR 18' and `Slice' × `Wis. SMR 18'. Phenotypic correlations between leaf and stem ratings were moderate (r = 0.52 to 0.72). Estimates of genetic gain for resistance to gummy stem blight ranged from low to moderate. Breeding methods that make best use of additive variance should be used because much of the variance for resistance is additive, and dominance effects, at least in these crosses, tended to contribute to susceptibility.

Free access

Gummy stem blight (Didymella bryoniae (Auersw.) Rehm) is one of the major cucumber diseases, causing the second highest loss of any disease in North Carolina. Published methods of screening for resistance to this fungus are poorly correlated with field resistance. The objective of this study was to develop seedling or detached-leaf screening methods that are correlated with field resistance. Seedling tests examined the effects of: seedling age (1, 2 or 3 true leaves), days in humidity chamber, inoculum concentration (1×105, 1×106 or 1×107 spores per ml), time of inoculation (am vs. pm), fungal isolates, and cultigens. Detached leaf tests examined the effects of leaf age (1st, 2nd or 3rd true leaf), inoculum concentration (1×104, 1×105 or 1×106 spores per ml), and light levels during incubation (dark vs. 12h light/12h dark). Correlations between seedling tests and field data were moderate to high (r = 0.5 to 0.7). However, the coefficients of variation were also high. Correlations between detached leaf tests and field data were very low or negative.

Free access

Gummy stem blight [Didymella bryoniae (Auersw.) Rehm] is the second most important pathogen of field-grown cucumbers (Cucumis sativus L.) in North Carolina and a severe problem for greenhouse-grown cucumbers worldwide. To determine whether resistance exists under North Carolina field conditions, 83 cultigens [cultivars, breeding lines, and plant introduction (PI) accessions] were evaluated in the field for 4 years for their resistance to a mixture of D. bryoniae isolates. Plants were inoculated at the vine tip-over stage and rated for foliar lesion size and number. Cultigens identified as resistant in Wisconsin and The Netherlands were not resistant in North Carolina. When averaged over years and locations, the most resistant C. sativus cultigens were PI 164433, `Slice', PI 390264, M 17, and M 12. Several accessions of related Cucumis species were highly resistant: PI 299568 (C. myriocarpus Naud.), PI 282450 (C. zeyheri Sond.), PI 299572 (C. myriocarpus), and PI 233646 (C. anguria L.). The most susceptible cultivars were `Colet', `Meresto', `Supergreen', `Dura', `Pioneer', `Marketmore 76', `Pickmore', and `Addis'. `Calypso' and `Dasher II', popular cultivars in North Carolina, were moderately susceptible.

Free access