Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Paul A. Domoto x
Clear All Modify Search
Open access

James A. Schrader, Diana R. Cochran, Paul A. Domoto and Gail R. Nonnecke

The popularity of grape (Vitis sp.) and wine production in the upper midwest region of the United States is increasing steadily. The development of several cold-climate, interspecific-hybrid grape cultivars (northern hybrids) since the 1980s has improved the probability of success for both new and established vineyards in this area of the country, but long-term data describing the performance of these cultivars in midwestern U.S. climates are needed to both aid growers in their choice of cultivars and to provide them with information about factors important in their management. We characterized the long-term winterhardiness and annual phenology of 12 cold-climate northern hybrid grape cultivars (two established cultivars, five newer cultivars, and five advanced selections) grown in a randomized and replicated field plot in central Iowa, an area that offers a warm growing season and very cold dormant season for grape culture. The established cultivars included in the study were Frontenac and St. Croix. The newer cultivars evaluated were Arandell, Corot noir, La Crescent, Marquette, and Petit Ami, and the advanced selections were MN 1189, MN 1200, MN 1220, MN 1235, and MN 1258. The grape trial was established in 2008, and vines were evaluated from 2011 through 2017 for annual timing of budbreak, bloom, veraison, and harvest, as well as winter survival of vines and primary buds. As a group, the northern hybrids in our trial showed good winterhardiness of vines but variable hardiness of primary buds across the six winters, which ranged from warmer than average to much colder than average. In Iowa climate, buds of northern hybrids were generally most vulnerable to cold temperature damage from late-winter (March) low-temperature events or from extreme midwinter low-temperature events. The bud hardiness of individual cultivars ranged from very hardy (Frontenac, Marquette, and MN 1235) to poor hardiness (Arandell, Corot noir, Petit Ami, and MN 1189), with all 12 cultivars showing good bud survival during Iowa winters that were warmer than average, but the less-hardy cultivars showing poor bud survival during winters that were colder than average. Evaluations of phenology revealed that heat accumulation measured in growing degree days with a threshold of 50 °F was not a reliable index for predicting the timing of annual developmental stages for the cultivars we tested. Our results indicate that northern hybrids rely on other factors in addition to heat accumulation for guiding annual development, and that factors such as photoperiod likely have a strong influence on phenological timing during seasons with unusual weather patterns. We determined that none of the cultivars were vulnerable to cold temperature damage to fruit before harvest in Iowa’s climate, but that three of the cultivars (Arandell, Marquette, and MN 1235) were highly vulnerable to shoot damage from spring freeze events, and four others (Corot noir, La Crescent, MN 1200, and MN 1220) were moderately vulnerable to cold damage to shoots in spring. An itemized summary of the relative hardiness, vulnerabilities, and timing of phenological stages of the 12 cultivars is provided to aid growers in selection and management of grape cultivars for Iowa climate. Based on hardiness and phenology, four of these cultivars (Frontenac, MN 1258, MN 1220, and MN 1200) have the lowest risk of issues related to cold temperatures.

Open access

James A. Schrader, Diana R. Cochran, Paul A. Domoto and Gail R. Nonnecke

Increasing interest in grape (Vitis sp.) and wine production in the upper midwest region of the United States has created a need for science-based information that characterizes the potential of cold-climate cultivars to produce quality grapes with acceptable yields. We evaluated the yield and quality (composition) of grapes from 12 cold-climate, interspecific-hybrid grape cultivars (northern hybrids) grown in a randomized and replicated field plot in central Iowa. The grape trial was planted in 2008, and crop performance of cultivars was evaluated from 2012 through 2017 (yield) and 2014 through 2017 (berry composition). The trial included two established cultivars, five newer cultivars, and five advanced selections. The established cultivars included in the study as controls were Frontenac and St. Croix. The newer cultivars evaluated in this study were Arandell, Corot Noir, La Crescent, Marquette, and Petit Ami, and the advanced selections were MN 1189, MN 1200, MN 1220, MN 1235, and MN 1258. Yield and productivity were characterized by measuring yield per vine, number of clusters per vine, average cluster weight, and pruning weight. The fruit composition indices were soluble solids concentration (SSC), pH, titratable acidity (TA), and sugar:acid ratio (SSC ÷ TA). On the basis of their strong results for both yield and fruit composition measures, ‘Marquette’, MN 1235, and MN 1220 ranked as the top-performing cultivars in Iowa’s climate, followed by Petit Ami and St. Croix. ‘Petit Ami’ had slightly lower yield consistency and slightly lower results for SSC than did the top performing cultivars, and St. Croix had among the highest and most consistent yields of the trial but showed lower results for SSC and sugar:acid ratio than many of the other cultivars. ‘La Crescent’ had midrange yields and high SSC, but the high TA of ‘La Crescent’ fruit resulted in a low sugar:acid ratio at harvest. Two cultivars (MN 1258 and MN 1200) had relatively low yields in Iowa’s climate but achieved good results for composition indices. ‘Frontenac’ had high, consistent yields and achieved high SSC, but the very high TA of ‘Frontenac’ fruit resulted in a very low sugar:acid ratio compared with most other cultivars. The remaining three cultivars (Corot Noir, MN 1189, and Arandell) performed poorly in Iowa’s climate, showing both low yield and undesirable fruit composition indices compared with the other cultivars in the trial. An itemized summary of the relative ratings for yield and fruit composition is provided to aid growers in selection and management of grape cultivars for use in Iowa and other areas of similar climate.