Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Patrick J. Breen x
  • All content x
Clear All Modify Search
Free access

Guiwen W. Cheng and Patrick J. Breen

Fruit size, number of receptacle cells, and mean cell size were determined throughout development of secondary fruit of three day-neutral strawberry (Fragaria ×ananassa Duch.) cultivars grown in a greenhouse. Cells were counted after enzymatic separation of receptacle tissue, and mean cell volume was estimated from cell count and receptacle tissue volume. Size of mature fruit was small (3.8 g) in `Tillikum', medium (11.5 g) in `Tristar', and large (15.6 g) in `Selva'. Fruit size was correlated with the number of achenes per berry. Mature fruit of `Tillikum' had a lower fruit fresh weight per achene and lower achene population density (achenes per square centimeter) than the larger-fruited cultivars. The average number of cells per mature fruit was 0.72 × 106, 1.96 × 106, and 2.94 × 106 for `Tillikum', `Tristar', and `Selva', respectively. The relative difference among cultivars in the number of receptacle cells was established by the time of anthesis. In all cultivars, cell division was exponential for 10 days following anthesis and ceased by the 15th day. Mean cell volume increased slowly during active cell division, but rose rapidly and linearly for 10 days after cell division halted. Mean cell volume of all cultivars increased > 12-fold after anthesis and was ≈ 6 × 106 μm3 in mature fruit. The genotypic variation in the size of mature fruit was not the result of large differences in either duration of cell division after anthesis or mean cell volume, but rather was primarily due to differences in the number of receptacle cells established by anthesis.

Free access

Guiwen W. Cheng and Patrick J. Breen

Studies on regulation of production of phenolics in strawberry (Fragaria X ananassa Duch,) fruit were initiated by monitoring phenylalanine ammonia-lyase (PAL) activity and levels of anthocyanins, flavonoids, tannins, and other soluble phenols throughout fruit ontogeny in `Tillikum'. PAL catalyzes the first step in the biosynthesis of phenylpropanoids, which are further modified into a wide variety of phenolic compounds. Peak in PAL activity (1 mol· s-1 = 1 kat) of 90 pkat· mg-1 protein was detected at 5 and 27 days after anthesis (DAA), when fruit was green and nearly ripe, respectively. PAL activity was only ≈10% of peak values in the white berry stage, when. fruit growth was most rapid. The second peak in PAL activity was followed by a rapid drop, to nearly zero in red-ripe fruit at 30 DAA. Total soluble phenols reached a maximum level soon after anthesis, just before the first peak in PAL activity, then declined to a low constant value well in advance of fruit ripening. Similar changes were observed in levels of tannins and flavonoids that, at anthesis, accounted for 44% and 51% of the soluble phenols, respectively. The concentration of anthocyanin was very low throughout most of fruit development, but beginning at 23 DAA it increased from <0.03 to >0.53 mg·g-1 fresh weight in 3 days. This accumulation paralleled the second rise in PAL activity. Accordingly, strawberry fruit have a developmental-dependent expression of PAL activity and accumulation of phenolic substances derived from the phenylpropanoid pathway.

Free access

Kirk W. Pomper and Patrick J. Breen

Expansion of green-white and red fruit in control (watered) and water-stressed greenhouse-grown strawberry (Fragaria ×ananassa Duch. `Brighton') plants was monitored with pressure transducers. Expansion of green-white fruit in control plants was rapid, showing little diurnal variation; whereas in water-stressed plants, fruit expansion occurred only during dark periods and shrinkage during the day. Red fruit were mature and failed to show net expansion. The apoplastic water potential (ψaw), measured with in situ psychrometers in control plants was always higher in leaves than in green-white fruit. In stressed plants, ψaw of leaves was higher than that of green-white fruit only in the dark, corresponding to the period when these fruit expanded. To determine the ability of fruit to osmotically adjust, fruit were removed from control and water-stressed plants, and hydrated for 12 hours; then, solute potential at full turgor (ψs 100) was measured. Water-stressed green-white fruit showed osmotic adjustment with a ψs 100 that was 0.28 MPa lower than that of control fruit. Mature leaves of water-stressed plants showed a similar level of osmotic adjustment, whereas water stress did not have a significant effect on the ψs 100 of red fruit. Fruit also were severed to permit rapid dehydration, and fruit solute potential (ψs) was plotted against relative water content [RWC = (fresh mass - dry mass ÷ fully turgid mass - dry mass) × 100]. Water-stressed, green-white fruit had a lower ψs for a given RWC than control fruit, further confirming the occurrence of osmotic adjustment in the stressed fruit tissue. The lack of a linear relationship between turgor pressure and RWC prevented the calculation of cell elasticity or volumetric elastic modulus. Osmotic adjustment resulted in about a 2.5-fold increase in glucose and sucrose levels in water-stressed green-white fruit. Although green-white fruit on water-stressed plants showed osmotic adjustment, it was not sufficient to maintain fruit expansion during the day.

Free access

Glen L. Creasy and Patrick J. Breen

A fruit-set disorder of grape, called Inflorescence Necrosis (IN), causes death of flower cluster tissue near bloom. Various chemical treatments have been reported to increase IN severity. Separate studies show that high flower cluster NH4+ is related to naturally occurring IN. We designed a field trial to determine if treatments thought to influence IN severity also affect flower cluster NH4+. One week before first bloom, flower clusters were dipped in solutions of either methionine sulfoximine (MSO, an inhibitor of NH4+ assimilation), α-keto glutarate, (NH4)2HPO4, KNO3, NAA, GA, or an emulsion solution reported to increase transpiration. Also, ethephon was sprayed on whole vines 1 week before first bloom. Flower clusters were collected 5 days after treatment. MSO increased tissue [NH4+] by almost 2-fold over that of controls. NAA and GA reduced [NH4+] a small amount, possibly due to their slightly higher fresh weights. Other dip treatments did not affect [NH4+]. Despite high [NH4+] in MSO treated clusters, there were no visual differences in IN between treatments. Ethephon increased cluster [NH4+] 20% over that of controls, but caused more severe IN. These data show that flower cluster [NH4+] is not always coupled with IN symptoms.

Free access

Kirk W. Pomper and Patrick J. Breen

Invertase (INV) may influence sugar levels and assimilate transport in strawberry fruit. Several groups, including our own, have only detected acid INV (optimum pH 4.6) in strawberry fruit, however, recently Hubbard et al. (Physiol. Plant. 82:191-196, 1991) reported the presence of a neutral INV (pH 7.5). Since dissimilar isolation protocols may have contributed to the different findings, we re-examined our work with developing `Brighton' strawberry using the extraction procedure of Hubbard et al. Neutral INV activity per gFW (pH 7.5-8.0) increased many fold as fruit developed from green to the red ripe stage. Acid INV activity decreased markedly from green-white to the red stage. In addition, when fruit extracts were precipitated with cold acetone, a pellet contained 60% of the acid INV activity, and a surface coagulation of protein contained 60% of the neutral INV activity. This allowed easy separation of these two enzymes. Extraction methodologies affect isolation of neutral INV activity from strawberry fruit.

Free access

Lailiang Cheng, Leslie H. Fuchigami, and Patrick J. Breen

Bench-grafted Fuji/M26 apple (Malus domestica Borkh) trees were fertigated with different concentrations of nitrogen by using a modified Hoagland's solution for 45 days. CO2 assimilation and actual photosystem II (PSII) efficiency in response to incident photon flux density (PFD) were measured simultaneously in recent fully expanded leaves under low O2 (2%) and saturated CO2 (1300 ppm) conditions. A single curvilinear relationship was found between true quantum yield for CO2 assimilation and actual PSII efficiency for leaves with a wide range of leaf N content. The relationship was linear up to a quantum yield of approximately 0.05 mol CO2/mol quanta, then became curvilinear with a further rise in quantum yield in response to decreasing PFD. This relationship was subsequently used as a calibration curve to assess the rate of linear electron transport associated with rubisco and partitioning of electron flow between CO2 assimilation and photorespiration in different N leaves in response to intercellular CO2 concentration (Ci) under normal O2 conditions. Both the rate of linear electron flow, and the rate to CO2 or O2 increased with increasing leaf N at any given Ci, but the percentage of linear electron flow to CO2 assimilation remained the same regardless of leaf N content. As Ci increased, the percentage of linear electron flow to CO2 assimilation increased. In conclusion, the relationship between actual PSII efficiency and quantum yield for CO2 assimilation and the partitioning of electron flow between CO2 assimilation and photorespiration are not affected by N content in apple leaves.

Free access

Lailiang Cheng, Leslie H. Fuchigami, and Patrick J. Breen

Bench-grafted `Fuji' apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] trees on Malling 26 (M.26) rootstocks were fertigated for 6 weeks with N concentrations ranging from 0 to 20 mm. These treatments produced levels of leaf N ranging from 0.9 to 4.3 g·m-2. Over this range, leaf absorptance increased curvilinearly from 74.8% to 92.5%. The light saturation point for CO2 assimilation expressed on the basis of absorbed light increased linearly at first with increasing leaf N, then reached a plateau at a leaf N content of ≈3 g·m-2. Under high light conditions (photosynthetic photon flux of 1500 μmol·m-2·s-1), the amount of absorbed light in excess of that required to saturate CO2 assimilation decreased with increasing leaf N. Chlorophyll fluorescence measurements revealed that the maximum photosystem II (PSII) efficiency of dark-adapted leaves was relatively constant over the leaf N range, except for a slight decrease at the lower end. As leaf N increased, nonphotochemical quenching declined under high light, and there was an increase in the efficiency with which the absorbed photons were delivered to open PSII centers. The photochemical quenching coefficient remained high except for a decrease at the lower end of the leaf N range. Actual PSII efficiency increased curvilinearly with increasing leaf N, and was highly correlated with light-saturated CO2 assimilation. The fraction of absorbed light potentially going into singlet oxygen formation was estimated to be ≈10%, regardless of leaf N status. It was concluded that there was more excess absorbed light in low N leaves than in high N leaves under high light conditions. Nonphotochemical quenching was enhanced with decreasing leaf N to reduce both the PSII efficiency and the probability of damage from photooxidation by excess absorbed light.

Free access

Lailiang Cheng, Leslie H. Fuchigami, and Patrick J. Breen

Photosystem II (PSII) efficiency and CO2 assimilation in response to photon flux density (PFD) and intercellular CO2 concentration (Ci) were monitored simultaneously in leaves of apple, pear, apricot, and cherry with a combined system for measuring chlorophyll fluorescence and gas exchange. When photorespiration was minimized by low O2 (2%) and saturated CO2 (1300 ppm), a linear relationship was found between PSII efficiency and the quantum yield for CO2 assimilation with altering PFD, indicating CO2 assimilation in this case is closely linked to PSII activity. As PFD increased from 80 to 1900 μmol·m–2·s–1 under ambient CO2 (350 ppm) and O2 (21%) conditions, PSII efficiency decreased by increased nonphotochemical quenching and decreased concentration of open PSII reaction centers. The rate of linear electron transport showed a similar response to PFD as CO2 assimilation. As Ci increased from 50 to 1000 ppm under saturating PFD (1000 μmol·m–2·s–1) and ambient O2, PSII efficiency was increased initially by decreased nonphotochemical quenching and increased concentration of open PSII reaction centers and then leveled off with further a rise in Ci. CO2 assimilation reached a plateau at a higher Ci than PSII efficiency because increasing Ci diverted electron flow from O2 reduction to CO2 assimilation by depressing photorespiration. It is concluded that PSII efficiency is regulated by both nonphotochemical quenching and concentration of open PSII reaction centers in response to light and CO2 to meet the requirement for photosynthetic electron transport.