Search Results

You are looking at 1 - 10 of 24 items for

  • Author or Editor: Patrick H. Brown x
Clear All Modify Search

Concentrations of N, P, K, Ca, Mg, B, Fe, Cu, Zn, and Mn in mature commercial fig (`Calimyrna'; `Sari Lop') leaves are presented throughout the growing season. These data can be used as preliminary norms for the interpretation of tree nutrient status for high-yielding commercial fig orchards. In comparison with other deciduous tree crops growing in the same regions {almond [Prunus amygdalus Batsch syn. P. dulcis (Mill) D.A. Webb], walnut (Juglans regia L.), peach [Prunus persica (L.) Batsch]}, productive fig trees have relatively low leaf N, P, and K concentrations (2.1%, 0.1%, and 1.0% dry weight, respectively) in July, although tissue Mn and Ca concentrations often exceed those typically found in other deciduous species growing in the same soils. Seasonal variations in fig leaf nutrient concentrations are similar to those of other tree crops. Marked declines in tissue K and N concentrations toward the end of the season may indicate a need for supplemental N and K fertilization in highly productive orchards. The potential for K deficiency in fig also is indicated by the generally lower leaf K concentrations in the low-vigor orchards examined.

Free access

The aim of this research was to determine the seasonal patterns of N demand and uptake in mature almond trees and to use this information to develop an integrated computer model to guide fertilization management. To this end sequential whole tree excavations were conducted at 5 stages during a 15-month period. At each harvest date, five entire mature trees were excavated and partitioned into leaves, root, trunks, and branches. Samples were then analyzed for total nutrient content and differences in nutrient content between sequential harvests, which represents tree nutrient demand and tree nutrient uptake. Infromation on seasonal N uptake dynamics and total yearly N demand has now been integrated into a user-friendly interactive computer program that can be used to optimize N fertilizer management. The details of this program will be discussed. In summary, the determination of N fluxes in almond demonstrates that the majority of N uptake and demand occurs from late February through to early September and that the primary demand for N is for nut fill and nut development. N demands can therefore be predicted by estimating yield and can be applied during the periods of greatest N uptake from the soil which occurs during nut development. By timing N applications with periods of greatest demand, and matching N application rates with crop load we provide growers with a tool that will encourage maximum efficiency of use of N fertilizers. Maximum efficiency of use will result in a minimization of N loss from the orchard system.

Free access

Boron toxicity is a wide spread problem especially in arid and semiarid areas of the world. Boron toxicity can result in yield loss of many crop plants, especially stone fruits which are sensitive to high boron concentration. This study was designed to follow the effect of Ca+2 supplementation on partitioning of B at the plant organ level (leaves, stem, roots) and the subcellular level (the cell wall) using the stable isotope 10B.

Results demonstrate that calcium supplementation reduced B accumulation in plum and peach leaves by 31% at the low level (0.25 mM) and by 12% at the high B level (0.50 mM). Results indicate an effect of Ca on the uptake and distribution of 10B between plant organs.

Symptoms of B toxicity in peach (Lovell) include stem die back, necrotic brown spots on the stem and gum formation on the nodes, whereas in plum (Mariana), stem die back and gum formation, as droplets, on the lower leave's surface were the main symptoms.

Free access

The characteristics and mechanisms of foliar Zn uptake and translocation in pistachio (Pistachio vera L.) and walnut (Juglans regia L.) were investigated using 68Zn labelling in both intact and detached leaves. Following washing, mature walnut and pistachio leaves retained 8% and 12% of the total Zn applied, respectively. About half of retained Zn (3.5% and 6.5% of total Zn respectively) was absorbed into the leaf and translocated outside the treated area. Leaf age affected the Zn absorption capacity of pistachio but not walnut. Immature pistachio leaves absorbed more Zn than mature leaves. The absorption of Zn by walnut leaves at high concentrations (7.5 to 15 mm Zn) was not significantly affected by the pH of the solution. In pistachio Zn absorption was greatest at pH 3.5 and declined as pH increased to 8.5. The uptake process was not affected by light or addition of metabolic inhibitors. Foliar leaf absorption was only slightly affected by changes in temperature with an average Q10 of 1.2 to 1.4. This study suggests that foliar Zn uptake is dominated by an ion exchange and/or diffusion process rather than an active one. This study also demonstrates the usefulness of stable isotope labelling in studies of foliar Zn absorption.

Free access

The distribution and transport of foliar applied Zn were determined for pistachio (Pistachio vera L.) seedlings and mature trees using stable 68Zn isotope. In seedlings, ≈5.4% of Zn adsorbed by the leaf was transported out of the treated leaves and this Zn was detected in all other plant parts to varying extent. In mature trees, the transport of Zn occurred both acropetally and basipetally within the leaflets with more basipetal movement; however, no significant amount of Zn was transported out of the treated leaflets during the first 10 days after application. The total percentage of Zn transported to other plant parts 20 days after application was significantly greater when Zn was applied to immature leaflets (6.5%) than to mature leaflets (2.1%), though the majority of the absorbed Zn remained within the treated leaflets. The limited mobility of foliar-absorbed Zn in pistachio may partially be attributed to the high binding capacity of leaf tissue for Zn.

Free access

In this study, we investigated the effectiveness of several Zn formulations applied at various times of the year in increasing Zn status of pistachio and walnut leaves. Formulations included inorganic and organic forms of Zn. Fall sprays was ineffective at supplying Zn to developing leaves even when very high rates (5000 ppm) were used. Late dormant and budbreak sprays were effective at supplying Zn to developing leaves and nuts only when extremely high rates (5000 ppm) were applied. Spring flush sprays were the most effective, while late spring and summer sprays were ineffective. The majority of the Zn applied remained in the epidermis of the sprayed leaves, which resulted in high Zn content of leaves but poor correction of Zn deficiency and little or no translocation of Zn to other plant parts. Many of the Zn formulations sprayed at spring flush at a rate of 1000 ppm effectively increased leaf Zn values by at least 10 μg–g–1. Addition of an appropriate organic acid to the spray solution and adjustment of pH to ≈4.5 improves leaf uptake and translocation of Zn. Addition of specific surfactants into the spray solution is also recommended. Use of N- and P-containing Zn spray formulations is less effective than sulfur-based sprays (i.e., ZnSO4). Significantly, there is little residual effect of foliar sprays (even at spring flush), indicating that consecutive sprays for several years are needed to maintain productivity in Zn-deficient regions.

Free access

Fruit set is a major determinant of nut productivity. Boron has been shown to have a significant influence on flowering and fruit set in a number of crops but less is reported on almond. This paper presents results of foliar application of a B commercial product, Solubor(20.5% B) at a rate of 1,2,3lb/100 gallons to `Butte' and `Mono' almond cultivars Boron at 1 and 2lb increased fruit set in both open and hand pollinated trees by over 100% while 3lb was less effective. The resultant B concentration in flower buds was correlated to B concentration in flowers (R2=0.58) and immature fruits (R2=0.6) but not to summer and fall leaf, pistil, and pollen B concentration or fruit set.

Free access

Excessive soil and water boron (B) occur widely in California, often in conjunction with high soil salinity. Descriptions of the symptoms of B toxicity and quantification of its impact on Prunus species are not available. In these experiments we describe the impact of high B and saline conditions on uptake, distribution and growth depression in almond, peach, plum and peach/almond hybrid rootstocks

A series of experiments are described that indicate an important additive effect of B on sensitivity of Prunus species to salinity. Boron concentrations in excess of lppm in the irrigation solution, significantly impair plant growth under moderate (non-limiting) salinity conditions and lead to plant death at higher salinity levels. Symptoms of B toxicity in Prunus include stem necrosis and vascular occlusion. Unlike most other species, B does not appear to accumulate in the leaf margins and leaf symptoms are generally not observed. Differences in sensitivity of a range of Prunus species to B toxicity are described.

Initial results suggest that differences in rootstock sensitivity to B and salinity are the result of differential uptkake and partitioning of B, Na and Cl within the plant.

Free access

The uptake and distribution of foliar and soil applied boron has been followed in a seven year old pistachio orchard by utilizing 10B isotope dilution techniques and ICP-MS determination. In conjunction with these uptake studies, in-vivo and in-vitro measurements of pollination and fruit set have been used to determine the role of boron in flowering and fruit set.

Foliar applications of boron (1, 2.5 and 5 kg/400 l) resulted in improved fruit set when compared to control trees receiving no supplemental B even when tissue B levels in these control trees appeared adequate (>60 μg/g dwt). Results indicate that B applied to male trees in the late dormant phase (february) is effective in enhancing in-vitro pollen germination by as much as 50%. Movement of B into flower buds and fruit clusters was verified using 10B techniques thus demonstrating the potential usefulness of this technique in correcting incipient B deficiency. A possible role of B in the flowering and fruiting process is discussed.

Free access

The influence of B and salinity [3 Na2SO4 : 1 CaCl2, (molar ratio)] on B toxicity and the accumulation of B, sodium, and SO4 in six Prunus rootstocks was evaluated. High salinity reduced B uptake, stem B concentrations, and the severity of toxicity symptoms in five of the six rootstocks. Forward and backward stepwise regression analyses suggested that stem death (the major symptom observed) was related solely to the accumulation of B in the stem tissue in all rootstocks. The accumulation of B and the expression of toxicity symptoms increased with time and affected rootstock survival. No symptoms of B toxicity were observed in leaf tissue. The Prunus rootstocks studied differed greatly in stem B accumulation and sensitivity to B. The plum rootstock `Myrobalan' and the peach-almond hybrid `Bright's Hybrid' were the most tolerant of high B and salinity, whereas the peach rootstock `Nemared' was very sensitive to high B and salinity. In all rootstocks, adding B to the growth medium greatly depressed stem SO4 concentrations. In every rootstock except `Nemared' peach, adding salt significantly depressed tissue B concentrations. A strong negative correlation between tissue SO4 and B was observed. Grafting experiments, in which almond was grafted onto `Nemared' peach or `Bright's Hybrid', demonstrated the ability of rootstocks to influence B accumulation and scion survival.

Free access