Search Results
You are looking at 1 - 10 of 19 items for
- Author or Editor: Patrick E. McCullough x
Turf managers may wish to reseed common bermudagrass [Cynodon dactylon (L.) Pers.] following weed control with rimsulfuron, simazine, or sulfosulfuron applications, but establishment may be affected by herbicide residual activity. Field experiments were conducted in Georgia to investigate bermudagrass reseeding intervals for these herbicides. Application timing before seeding reduced bermudagrass establishment more than herbicide rate. By four weeks after seeding, bermudagrass cover was 15%, 53%, 81%, and 90% of the untreated from herbicides applied zero, two, four, or six weeks before seeding, respectively. Simazine at 2.24 kg a.i./ha reduced bermudagrass cover more frequently than sulfosulfuron at 0.035 and 0.07 kg a.i./ha and rimsulfuron at 0.02 kg a.i./ha. Results suggest that common bermudagrass may be safely reseeded four to six weeks after rimsulfuron, simazine, or sulfosulfuron treatments, but applications made closer to the seeding date have the potential to significantly delay establishment.
Swinecress [Coronopus didymus (L.) Sm.] is a problematic weed in newly seeded tall fescue (Festuca arundinacea Schreb.) and often warrants control with herbicides. The objective of this research was to investigate the influence of application timing on efficacy of aminocyclopyrachlor, fluroxypyr, and triclopyr for swinecress control compared with dichlorophenoxyacetic acid (2,4-D) + 3,6-dichloro-o-anisic acid (dicamba) + methylchlorophenoxypropionic acid (MCPP). Aminocyclopyrachlor at 0.05 and 0.10 kg a.i./ha provided less than 35% control from February applications, but both rates averaged greater than 90% control with April applications. Fluroxypyr at 0.26 and 0.52 kg a.i./ha provided poor (less than 70%) control from February applications but control increased to 71% and 90% from April treatments, respectively. Triclopyr at 0.56 and 1.12 kg a.i./ha provided greater than 90% swinecress control at both application timings and was comparable to 2,4-D + dicamba + MCPP. Overall, aminocyclopyrachlor and fluroxypyr were only effective for controlling swinecress in April, whereas triclopyr provided excellent control with February and April applications.
Although dithiopyr has been used for smooth crabgrass [Digitaria ischaemum (Schreb) Schreb. ex Muhl.] control for many years, data describing the efficacy of a new, water-based formulation of dithiopyr for smooth crabgrass control are limited. Research was conducted in Knoxville, TN, and Griffin, GA, evaluating water-based and wettable powder dithiopyr formulations at 0.56 and 0.43 kg·ha−1 for smooth crabgrass control when applied at the pre-emergence (PRE), one- to two-leaf (1LF), one- to two-tiller (1TL), and greater than three-tiller (3TL) stages of growth. These treatments were compared with quinclorac (0.84 kg·ha−1) applied at the same POST timings (i.e., 1LF, 1TL, and 3TL). When applied PRE, all dithiopyr treatments provided greater than 85% smooth crabgrass control at the end of the trial in both locations. At the 1LF stage, both rates and formulations of dithiopyr provided greater than 93% smooth crabgrass control at 4 weeks after application and greater than 77% at the end of the trial. Applied at the 1TL stage in Tennessee, no differences in smooth crabgrass control were detected between quinclorac and any dithiopyr treatment at the end of the trial; when applied in Georgia at the 1TL stage, quinclorac provided greater smooth crabgrass control at the end of the trial than either rate or formulation of dithiopyr. Although no differences were detected between any dithiopyr treatment and quinclorac applied at the 3TL stage in Tennessee, smooth crabgrass control at the end of the trial measured less than 70% for all treatments. At the end of the trial in Georgia, smooth crabgrass control with quinclorac (91%) was greater than both formulations of dithiopyr. These findings suggest that both the wettable powder and water-based formulations of dithiopyr can be used to effectively control smooth crabgrass at the PRE and 1LF stages of growth, but quinclorac should be selected over dithiopyr for control of tillering smooth crabgrass plants. Turfgrass managers should implement smooth crabgrass control measures at PRE and 1LF timings, because erratic responses can be observed with both dithiopyr and quinclorac applications to smooth crabgrass after tillering. Chemical names used: dithiopyr (S,S-dimethyl 2-(difluoromethyl)-4-(2-methylpropyl)-6-(trifluoromethyl)-3,5-pyridinedicarbothioate); quinclorac (3,7-dichloro-8-quinolinecarboxylic acid).
Dwarf bermudagrass morphological characteristics following the use of plant growth regulators have not been reported. The objective of this greenhouse study was to determine short-term effects of seven plant growth regulators on clipping yield, chlorophyll concentration, and root mass of `TifEagle' bermudagrass. Growth regulators tested included ethephon, fenarimol, flurprimidol, maleic hydrazide, mefluidide, paclobutrazol, and trinexapac-ethyl. Two applications of each compound were made over a 6-week period. Root mass was reduced 39% by fenarimol and 43% by flurprimidol, while other PGRs had root mass similar to untreated turf. `TifEagle' bermudagrass treated with paclobutrazol, mefluidide, fenarimol, and flurprimidol averaged 45% less root mass than trinexapac-ethyl-treated turf. Trinexapac-ethyl was the only compound to reduce clippings and enhance turf quality without negative rooting effects. Chemical names used: [4-(cyclopropyl-[α]-hydroxymethylene)-3,5-dioxo-cyclohexane carboxylic acid ethyl ester] (trinexapac-ethyl); {α-(1-methylethyl)-α-[4-(trifluoro-methoxy) phenyl] 5-pyrimidine-methanol} (flurprimidol); (+/-)-(R*,R*)-β-[(4-chlorophenyl) methyl]-α-(1, 1-dimethyl)-1H-1,2,4,-triazole-1-ethanol (paclobutrazol); (N-[2,4-dimethyl-5 [[(trifluoro-methyl)-sulfonyl] amino]phenyl]acetamide) (mefluidide); [1,2-dihydro-3,6-pyridazine-dione] (maleic hydrazide); [(2-chloroethyl)phosphonic acid] (ethephon); and (2-(2-chlorophenyl)-2-(4-chlorophenyl)-5-pyrimidinemethanol) (fenarimol).
Preemergence herbicides are applied to prevent summer annual weed infestations in turf, but safety to dwarf-type bermudagrass golf greens has not been determined for many of these materials. Field experiments tested ‘TifEagle’ bermudagrass response to bensulide at 11.2 kg·ha−1 (a.i.), dithiopyr at 0.56 kg·ha−1 (a.i.), napropamide at 2.2 kg·ha−1 (a.i.), oxadiazon at 2.2 kg·ha−1 (a.i.), oxadiazon plus bensulide at 1.7 + 6.7 kg·ha−1 (a.i.), and pendimethalin at 1.7 kg·ha−1 (a.i.). All herbicides reduced root mass from the nontreated, but only losses incited by oxadiazon plus bensulide were acceptable (less than 20%). Dithiopyr, napropamide, and pendimethalin delayed spring greenup in 2003 and 2004, whereas oxadiazon plus bensulide delayed spring greenup in 2004. In greenhouse experiments, ‘TifEagle’ bermudagrass root mass was reduced 19% to 37%, 30% to 33%, 4% to 26%, 28% to 37%, and 24% to 30% from various rates of bensulide, dithiopyr, napropamide, and pendimethalin, respectively. Oxadiazon and oxadiaxon plus bensulide reduced root mass by only 2% to 15% and 15% to 22%, respectively. In another experiment, oxadiazon plus bensulide at 1.7 + 6.7 kg·ha−1 did not injure shoots or roots of ‘Champion’, ‘FloraDwarf’, ‘MiniVerde’, ‘Tifdwarf’, or ‘TifEagle’ bermudagrass. Overall, dwarf-type bermudagrass golf greens do not appear to tolerate mitotic inhibitor preemergence herbicides, whereas oxadiazon or oxadiazon plus bensulide caused minimal injury.
Ethephon is an effective growth retardant for suppressing Poa annua (L.) seedheads in creeping bentgrass putting greens; however, ethylene induction may cause bentgrass leaf chlorosis, reduced rooting, and quality decline. Two greenhouse experiments investigated the effects of nitrogen (N) fertility and ethephon applications on `L-93' creeping bentgrass over 9 weeks. Ethephon was applied at 0, 3.8, and 7.6 kg·ha–1 a.i. per 3 weeks and N was applied at 4 and 8 kg·ha–1·week–1. Ethephon applications linearly reduced bentgrass quality on every weekly observation. Increased N rate to 8 kg·ha–1·week–1 improved turf quality about 10% to 20% and 10% to 30% from ethephon applied at 3.8 and 7.6 kg·ha–1 per 3 weeks, respectively. Increased N rate to 8 kg·ha–1·week–1 enhanced shoot growth 30% but reduced root mass and length 12% and 11%, respectively. After 9 weeks, ethephon reduced root length by about 30% and root mass about 35% at both rates. From nine weekly samples, ethephon reduced dry clipping yield 10% and 16% at 3.8 and 7.6 kg·ha–1 per 3 weeks, respectively. From 2 to 9 weeks after initial treatments, ethephon linearly increased leaf water content. Increasing N fertility effectively reduced bentgrass leaf chlorosis from ethephon; however, repeat applications of ethephon and increased N may restrict bentgrass root growth. Chemical names used: [(2-chloroethyl)phosphonic acid] (ethephon).
Plant growth regulators (PGRs) are often applied in combinations to reduce turf clippings, enhance turf quality, and suppress Poa annua L.; however, effects of PGR combinations on putting green ball roll distances have not been reported. Two field experiments were conducted on an `L-93' creeping bentgrass (Agrostis stolonifera var. palustris Huds.) putting green in Clemson, S.C., to investigate effects of four PGRs with and without a subsequent application of ethephon at 3.8 kg·ha–1 a.i. 6 days after initial treatments. The PGRs initially applied included ethephon at 3.8 kg·ha–1 a.i., flurprimidol at 0.28 kg·ha–1 a.i., paclobutrazol at 0.28 kg·ha–1 a.i., and trinexapac-ethyl at 0.05 kg·ha–1 a.i.. Ball roll distances were enhanced 3% to 6% (4 to 8 cm) by exclusive flurprimidol, paclobutrazol, and trinexapac-ethyl treatments. The additional ethephon application reduced ball distances 2% to 9% (2 to 11 cm). Paclobutrazol and trinexapac-ethyl treated turf receiving the additional ethephon application had longer or similar ball roll distances to non-PGR treated turf. The additional ethephon treatment reduced turf quality to unacceptable levels 1 and 2 weeks after applications. However, bentgrass treated previously with trinexapac-ethyl and paclobutrazol had 8 to 16% higher visual quality following the additional ethephon treatment relative to non-PGR treated turf receiving the subsequent ethephon application. Overall, ethephon may have deleterious effects on monostand creeping bentgrass putting green quality and ball roll distances; however, applying ethephon with GA inhibitors could mitigate these adverse effects. Chemical names used: [4-(cyclopropyl-[α]-hydroxymethylene)-3,5-dioxo-cyclohexane carboxylic acid ethyl ester] (trinexapac-ethyl); {α-(1-methylethyl)-α-[4-(trifluoro-methoxy) phenyl] 5-pyrimidine-methanol} (flurprimidol); (+/-)–(R*,R*)-β-[(4-chlorophenyl) methyl]-α-(1, 1-dimethyl)-1H-1,2,4,-triazole-1-ethanol (paclobutrazol); [(2-chloroethyl)phosphonic acid] (ethephon).
Trinexapac-ethyl (TE) is a plant growth regulator registered for periodic applications on creeping bentgrass greens but ball roll as affected by various TE regimens have not been reported. Field experiments were conducted in Clemson, S.C., from May to July 2003 and 2004 on an `L-93' creeping bentgrass putting green. Turf received a total of 0.2 kg·ha–1 a.i. of TE over 12 weeks in three application regimens: 0.017 kg·ha–1 per week, 0.033 kg·ha–1 per 2 weeks, and 0.05 kg·ha-1 per 3 weeks plus a control. Ball roll distances were measured weekly with a stimpmeter in the morning (900 to 1100 hr) and evening (>1700 hr). Morning ball roll distances were generally longer than evening. Ball roll distances increased from June to July 2003 and from May to July 2004, likely resulting from greater bentgrass summer heat stress during the test period. Turf treated with biweekly and triweekly TE regimens had enhanced ball roll on three and four dates, respectively, but inconsistencies occurred likely from reduced efficacy with greater time between repeated applications. Weekly TE applications enhanced ball roll distances from the untreated by 5% to 8% on six dates. Turf injury did not occur following TE applications regardless of regimen. Overall, weekly TE applications increased ball roll distances more frequently than biweekly and triweekly regimens, but enhancements were inconsistent over the 2 years. Chemical name used: [4-(cyclopropyl-[α]-hydroxymethylene)-3,5-dioxo-cyclohexane carboxylic acid ethyl ester] (trinexapac-ethyl); (tetrachloroisophthalonitrile) (chlorothalonil); [methyl(E)-2-(2-(6-(2-cyanophenoxy) pyrimidin-4-yloxy)phenyl)-3-methoxyacrylate] (azoxystrobin); [aluminum tris(0-ethyl phosphonate)] (fosetyl-al); [N-(2,6-Dimethylphenyl)-N-(methoxyacetyl) alanine methyl ester] (metalaxyl); [(1-[[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl) -methyl]-14-1,2,4-triazole] (propiconazole).
Research was conducted in two studies at the Clemson University Greenhouse Complex, Clemson, S.C., with the objective of evaluating `TifEagle' bermudagrass (Cynodon dactylon × C. transvaalensis) response to paclobutrazol. TifEagle bermudagrass plugs were placed in 40 cm polyvinylchloride containers, with 20.3-cm-diameters and built to U.S. Golf Association specifications with 85 sand: 15 peatmoss (by volume) rootzone mix. Paclobutrazol was applied to separate containers at 0, 0.14, 0.28, and 0.42 kg·ha-1 (a.i.) per 6 weeks. Minor phytotoxicity occurred with 0.14 kg·ha-1 applications, but turf quality was unaffected. Severe bermudagrass phytotoxicity occurred from paclobutrazol at 0.28 and 0.42 kg·ha-1. Total clipping yield from 12 sampling dates was reduced 65%, 84%, and 92% from 0.14, 0.28, and 0.42 kg·ha-1, respectively. Root mass after 12 weeks was reduced 28%, 45%, and 61% for turf treated 0.14, 0.28, and 0.42 kg·ha-1, respectively. Paclobutrazol reduced root length 13%, 19%, and 19% by 0.14, 0.28, and 0.42 kg·ha-1, respectively. Turf discoloration and negative rooting responses advocate caution when using paclobutrazol on `TifEagle' bermudagrass. Chemical names used: (+/-)-(R*,R*)-ß-[(4-chlorophenyl) methyl]-alpha-(1, 1-dimethyl)-1H-1,2,4,-triazole-1-ethanol (paclobutrazol).
Plant growth regulators are applied to inhibit uneven shoot growth of putting green turf but research is limited on responses of dwarf-type bermudagrass cultivars to growth inhibition. Experiments were conducted at the Clemson University Greenhouse Complex with `Champion' and `TifEagle' bermudagrass grown in polyvinylchloride containers with 40 cm depths and 177 cm2 areas built to United States Golf Association specification. Flurprimidol was applied at 0.14, 0.28, and 0.48 kg·ha–1 a.i. and paclobutrazol at 0.14 kg·ha–1 a.i. on separate containers. Flurprimidol at 0.28 and 0.42 kg·ha-1 caused 17% and 31% reduction in turf color 5 weeks after treatment (WAT), respectively. `Champion' exhibited unacceptable turf injury (>30%) 2 WAT from paclobutrazol and all flurprimidol rates. `TifEagle' had unacceptable turf injury from flurprimidol at 0.42 kg·ha–1 2 WAT, 0.28 kg·ha–1 3 WAT, and 0.14 kg·ha–1 4 WAT that did not recover. Moderate injury (16% to 30%) was observed from paclobutrazol on `TifEagle' but ratings were acceptable. After 6 weeks, flurprimidol at 0.14, 0.28, and 0.42 kg·ha–1 reduced bermudagrass green shoot density (GSD) per square centimeter by 20%, 40%, and 40%, respectively, while paclobutrazol reduced GSD 12%. `TifEagle' total clipping yield was reduced 60%, 76%, and 86% from flurprimidol at 0.14, 0.28, and 0.42 kg·ha–1, respectively, and 37% from paclobutrazol. `Champion' total clipping yield was reduced 82%, 90%, and 90% from flurprimidol at 0.14, 0.28, and 0.42 kg·ha–1, respectively, and 58% from paclobutrazol. After 6 weeks, flurprimidol reduced `Champion' total root mass by 44% over all three rates. `Champion' treated with paclobutrazol had similar total root mass to the untreated. `TifEagle' treated with all PGRs had similar rooting to the untreated. Overall, flurprimidol will likely not be suitable for dwarf bermudagrass maintenance at these rates; however paclobutrazol may have potential at ≤0.14 kg·ha–1. Chemical names used: Flurprimidol {α-(1-methylethyl)-α-[4-(trifluoro-methoxy) phenyl] 5-pyrimidine-methanol}; Paclobutrazol, (+/-)–(R*,R*)-β-[(4-chlorophenyl) methyl]-α-(1, 1-dimethyl)-1H-1,2,4,-triazole-1-ethanol.